
N A S A C O N T R A C T O R

R E P O R T

00
ro

N

SPACEBORNE COMPUTER EXECUTIVE ROUTINE
FUNCTIONAL DESIGN SPECIFICATION

Volume 11. Computer Executive Design for
Space StatiodBase

by J. R. Kennedy and W. S. Fitzpatrick

Prepared by
COMPUTER SCIENCES CORPORATION
FIELD SERVICES DIVISION, AEROSPACE SYSTEMS CENTER
Huntsville, Ala. 3 5 802

for George C. Marshall

N A T I O N A L A E R O N A U T I C S

Space Flight Center

A N D S P A C E A D M I N I S T R A T I O N W A S H I N G T O N , D. C. OCTOBER 1971

.

"

TECH LIBRARY KAFB. NM

00b0932 ,

. ~~~ ~
. . - - ____~. - .. . ~~.

1. REPORT NO.
TECHNICAL REPORT at ~ I I Y - I S Y ,- . ..-_

2. coveu=wr m i s i o r r no.
" .

3. RECIPIENT'S CATALOG NO.
NASA CR-1868

. ~ ~~~

4. TITLE AND SUBTITLE
.. . ~ ~ . . ______~"_ . . -

Spaceborne Computer Executive Routine Functional Design 1 October 1971
Specification - Volume E. Computer Executive Design for
Space StationlBase ~- ~-

6. PERFORMING ORGANIZATION COOE

5. REPORT DATE

~ -~ ~~
"~ ~

7. AUTHOR(S) ,a. PERFORMING ORGANIZATION REPORT

J. R. Kennedy and " W. S t . Fitzpatrick ~~~

Computer Sciences Corporation
~~ ~" ~~

9. PERFORMING ORGANIZ~TIOI I NAME AND.MDRESS to. WORK uny NO.

Field Services Division, Aerospace Systems Center
8300 South Whitesburg Drive
Huntsville, Alabama 35802 ~

National Aeronautics and Space Administration
Washington, D. C. 20546

12. SPONSORING AGENCY NAME AND ADDRESS
Contractor Final Report

I.

14. SPONSORING AGENCY CODE I
I 15. SUPPLEMENTARY NOTES

t

16. ABSTRACT
"~ ~ ~ ..

~~

This report describes computer executive functional system design concepts derived
from study of the Space StatiodBase. Information Management System hardware
configuration as directly influencing the executive design is reviewed. The hard-
ware configuration and generic executive design requirements are considered in

I detail in a previous report (System Configuration and Executive Requirements
Specifications for Reusable Shuttle and Space Station/Base, 9/25/70). This report

I defines basic system primitives and delineates processes and process control. Super-
~ visor states are considered for describing basic multiprogramming and multiprocessing

systems. The report defines a high-level computer executive including control of
scheduling, allocation of resources, system interactions, and real-time supervisory
functions. The description is oriented to provide a baseline for a functional simulation
of the computer executive system..

I
I

This report is Volume I1 of a three-volume report entitled llSpaceborne Computer
Executive Routine Functional Design Specification. The other two volumes are:

Volume I: Functional Design of a Flight Computer Executive Program
for the Reusable Shuttle

I Volume 111: Executive Routine Primitives and Process Control I
.. . ~

"

17.- KEY WORDS
~-~ ~ ~

Space Station
Executive
Supervisor
Multiprocessor
Multiprogrammi,ng
Information Management System
Data Management System ,

18. DISTRIBUTION STATEMENT
Unclassified - Unlimited

~

19. SECURITY CLASSIF. (d thh report)
_______~

20.- -SECURTTY CLASSIF. (of t h

$3.00 88 Unclassified Unclassified

22. PRICE 21. NO. OF PAGES

t

For sale by the National Technical Information Service, Springfield, Virginia 22151

TABLE OF CONTENTS

SECTION I . INTRODUCTION . 5

SECTION I1 . CONFIGURATION . 7
A . Computer . 7
B . Data Distribution 14
C . Configuration Summary 16

SECTION 111 . PROCESS CONTROL AND SYSTEM PRIMITIVES . . . 19
A . Process Control 19
B . System Primitives 23

SECTION IV . SPACE STATION EXECUTIVE 27
A . Intercomputer Communications 28
B . Intracomputer Data Control 30
C . Scheduler . 32
D . Dispatching . 45
E . Supervisor . 47

SECTION V . CONCLUSIONS AND/OR RECOMMENDATIONS 81

iii

LIST OF ILLUSTRATIONS

Figure Title Page

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2 1

22

23

24

25

26

27

Multiprocessor Block Diagram 11

Data Distribution System . 17

Process Control Block . 2 1

EXIT/ABORT Procedures 25

Inter-Computer Communication 29

General %*stem Information Flow 31

Perspective of General Scheduling Strategies 33

Independent Algorithmic Scheduling 35

Data Management Computer Scheduling 38

Dynamic Allocator . 40

Sample Storage Map . 41

Standard Storage Interface 43

DMS Dispatcher . 46

Airborne Executive Basic Supervisor Modules 48

Supervisor Calls . 49

Input Job Processing . 51

Time Line Control . 52

Relation Behveen DMS Executive and the Data Bus
Controller . 54

Interdevice Transfer . 56

Data Bus Initiator . 57

Data Bus Controller Bus Requests 60

Frequency Queue Control . 62

Periodic Polling . 64

1/0 Er ro r Recovery . 66

Uplink Data Acquisition . 68

Real-Time (R/T) Diagnostics 70

Failed ALU Recovery Routine 72

iv

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page

28 Surviving ALU Cooperative Recovery 73

29 Controlled Retry . 75

30 Error State Transitions . 76

31 Recovery Procedure . 77

32 A Utility Feature . 79

V

LIST OF TABLES

Table Title Page

1 Equipment List . 8

2 Process Control Block Entry Descriptions 22

3 System Primitives . 24

vi

SUMMARY

The purpose of this report is to describe the functional design of an
Executive computer program for the Space Station. It is based upon a study
of the Information Management System (IMS) of the Space StatiodBase. The
study included a survey of Station-related documents, discussions with NASA
personnel and review of predecessor operating systems.

Two multiprocessors, a dual-redundant processor and a simplex
processor are included in the IMS. Each computer is composed of identical
basic components to reduce the spares, maintenance and training require-
ments. The computers contain microprogrammed control memory, 32-bit
word lengths and perform 200-250 thousand operations per second. Main
memory modules range from six specified for the Experiments computer to
one for tBe Biomedical computer. Each module is 16 , 384 32-bit words,
1-microsecond cycle time, and has a 6-port interface. Specifications for the
several required modules of auxiliary memory have not yet been identified.

The Data Bus Controller provides the facility for controlling the trans-
fer of data and furnishing the Data Management System (DMS) computer with
activity and s t a b information. It contains programmable control; memory for
buffer storage; decoding for modem subcarrier selection; and bit-rate transi-
tions. The Controller interfaces the DMS computer to the Digital Data Bus.
The Digital Data Bus is a time-division/frequency-division multiplexed bus.

Digital terminals interface devices through modems to the Digital Data
Bus. The Remote Data Acquisition Unit (RDAU) is a standard interface com-
ponent connecting the terminal to external sensors and receivers. Analog data
terminals similarly connect external signals to the Analog Data Bus.

A Process is the series of actions required to perform a unit of work
in the IMS. System Primitives are basic functions used to describe Executive
actions and states related to Processes. Construction is the collection of sub-
programs, library functions and system procedures associated with an identifying
block (Process Control Block) to form a Process.

The Space Station Executive is the collection of algorithms that exercise
computer control over computer resources. These algorithms may be imple-
mented in combinations of software, microcode and hardware. The DMS multi-
processor is the focal point of control, including the data bus, and as initiator
for the other computers.

Several methods a re available to control intercomputer communication.
The objective is maximum speed of interaction but minimum interference. Intra-
computer data movements require checks and counterchecks at process interfaces.

Scheduling of computer resources is sensitive to configuration, job
stream characteristics, and mission goals. Separate scheduling strategies
for each computer include those for the DMS, Experiment and GNC. The
Biomedical computer is an integral part of the Biomedical Subsystem and is
not controlled from the DMS Executive. A specific scheduling strategy is not
outlined for the Biomedical computer.

DMS and Experiment Scheduling are functionally similar since their
configurations are identical and the resources to be allocated are similar.
The Scheduler updates a queue when a new process requests computer time or
when resources are returned to the Executive. Dispatching of processor time
on the DMS is on a time-quantum basis which provides time sharing ability.

Experiment Scheduling Strategy is similar to an earthly laboratory
environment. The DMS initiates Experiment scheduling from the timeline
and crew requests. The Experiments Scheduler is a table generated list of
attributes. The Experiments will be time-event driven under pseudo-control
of experiment supervisors.

The GNC Scheduler considers unconstrained, periodic and interrupt
processes initiated by the DMS Executive. The GNC is envisioned to be a
foreground/background operation driven by the time and event table and dis-
patched by interrupts.

A supervisor call is an interrupt-type means by which a process can
request allocation or deallocation of resources or other Executive services.
The Input Job Processor is a routine for interpreting job control requirements.
The Timeline Control routine maintains a high level language version of the
timeline which it decodes and merges into the discrete time-event stream.

Data bus control can be accomplished by oversample, polling or inter-
rupt techniques. The Data Bus Controller is assumed to perform many repet-
itive 1/0 tasks. The Data Bus Programmer prepares the Controller to cycle
through its functions. The Controller supports device-to-device transfers
which may require the mixing of ancillary data and the resolution of conflicts
for shared resources.

Input/Output control routines wil l minimize delays to processors and
maximize device utilization. The Process Control Block will contain informa-
tion required by the 1/0 handlers. 1/0 error recovery is planned for each
phase of information exchange. Procedures are considered for saving 1/0
data during equipment down-time.

Interrupts wil l appear at processor interrupt-interface points. An
Executive controlled interrupt mask ignores irrelevant signals but, passes

2

relevant interrupts. Requirements for arming, disarming, preprocessing,
acknowledging, stacking and queuing of interrupts are recognized.

Polling is an alternative to interrupts. It is accomplished by querying
devices with a polling signal or standard interface word. The list of polled
devices receives priority arranged service.

Projected computer components a r e highly fault-tolerant. Real-time
diagnostics perform tests to verify correct operation or to isolate suspected
malfunctions. The failure rate is determined for transient failures and meas-
ured against acceptable thresholds. Maintenance diagnostics are selected to
trace hard failures to lower levels. Processor design can include control and
sense lines to enable the execution of an instruction one step at a time, the
results of which can be compared to the simulated step value.

If the last processor of a multiprocessor fails, it wil l attempt to recover
itself. A watchdog timer alarm wil l alert the second multiprocessor of the
complete failure of the first. The surviving multiprocessor will become the
DMS and take executive control. The survivor will reconfigure the system to
make maximum use of available components and to place malfunctioning compo-
nents off-line for replacement. The configuration changes will be displayed and
further changes can be initiated by the crew.

Utility routines perform the routine operating functions for the computer
facility. Accounting, library routines and mathematical functions are examples
of expected requirements for utility functions.

3

. .

SECTION I. INTRODUC TION

NASA will accomplish many "firsts" with the realization of a manned
laboratory as envisioned for the Space Station. One of these firsts will be the
establishment of a general-purpose computing facility for a manned spacecraft
similar to earthbound installations. Identification of the similarities and differ-
ences between spaceborne and earth-based facilities is not an objective of this
report but are referred to, tutorially, for clarification of design tradeoffs.
This report will provide a basis for functional simulation of the computer exec-
utive system. A functional simulation, combined with a representative job-
stream simulation, will permit the development of detailed specifications and
performance measurement criteria. The simulation could be constructed as
an important validation tool.

The design of a Space Station Computer Executive System (Executive or
Exec) is discussed in four parts:

0 Configuration,

0 System Primitives and Process Control,

0 Executive Design, and

0 Conclusions and/or Recommendations.

The configuration review is necessary to establish guidelines and major
points of departure. For example, the presence of multiprocessors establishes
requirements for defining Executive control procedures for multiprogram-
ming. The Data Bus and 1/0 Switching system place specific requirements and
constraints upon the Executive for special data routing capabilities.

Configuration definition is currently being pursued under other NASA
contracts. Specific data and control definitions are not generally available.
Where definition is required and not available, assumptions are identified
based upon the most recent NASA documents (l), a configuration and require-
ments report (2), prior experience, and discussions with NASA personnel.

'MSFC-DRL-160, Line Items 8 and 13, July 1970, NAS8-25140.

2Kennedy, et al, System Configuration and Executive Requirements Specifica-
tions, NAB-24930, Computer Sciences Corporation, September 1970.

5

"" ~ "_ . ""

System primitives and process control concepts define the basis for
the Executive design discussion. Primitives and the associated control are
defined in some detail. Volume 111 of this report discusses primitives and
process control in greater detail and relates them to hardware implementa-
tion techniques. The discussion demonstrates the simplicity of design when
performed in these terms and provides a vehicle for machine independent
discussions.

The Executive functional design is presented as a high-level descrip-
tion of a spaceborne computing facility's computer control program (Exec).
It is a functional representation of the hardware/software and software/
software interactions in a multicomputer, multiprocessor, and multiprogram-
ming environment. The extra-terrestrial constraints are particularly evident i n
the provisions for e r ro r detection and recovery and reconfigurability.

Trade studies and/or simulations a re recommended at points where
potentially critical assumptions are made with insufficient data. Several areas
for additional study have also been identified. Some of these studies, such as
job stream, are being conducted under NASA contracts and should readily lend
themselves to simulation. Several areas are primarily treated with examples
since the generality would not be made more clear by exhaustive but vague
descriptions.

6

SECTION II. CONFIGURATION

The equipment presently proposed for the Space Station Information
Management System (IMS) is listed in table 1. Some of this equipment has an
indirect influence on the Executive. Image processing, for example, could be
accomplished by a specially designed processor that would take advantage of
hardware implementations of well-defined data analysis procedures. However,
such a feature has not been specified and the application programs and con-
comitant requirements must be considered.

The entertainment equipment is not envisioned to be within the sphere of
DMS control functions. On the other hand, a library of available tapes and
microfilms could possibly be maintained by an application program. This would
place a requirement upon the Executive for cataloging, storing, and retrieving
entertainment information. In the absence of better definition, it wil l be neces-
sary to make assumptions concerning requirements based on the presence of
equipment and/or capabilities provided.

The remaining equipment listed in table 1, Computation, Data Acquisi-
tion, Data Distribution, and Bulk Data Storage, has a basic driving impact upon
the Executive design and receives more explicit treatment. This equipment is
discussed under two topics: (1) computers, and (2) data distribution. Thus,
the configuration can be viewed from the computer Executive's point of view for
the functional design to follow (Section rV. Space Station Executive).

A. Computer

The meaning of the word "computer" has become vague due to the pro-
liferation of designs and the terminology and acronyms that have been loosely
used to describe various hardware assemblies which might contain more or
less of the capabilities connotated. Therefore, a list of definitions is presented,
the expected characteristics of major Space Station assemblies is reviewed, and
major unique components are described in order to establish an unambiguous
foundation for discussion.

1. Definitions.

0 Main Memory. The addressable storage from which soft-
ware code (instructions and data) are-extracted and operated
upon.

0 Auxiliary Memory. The storage outside the range of the
Arithmetic Logic Units (ALU). Thus, information must be
transferred to main memory to be operated upon by the ALU.

7

TABLE 1. EQUIPMENT LIST

Equipment Name

Computation
DMS Processors
Main Memory
Auxiliary Memory

Experiment Processors
Main Memory
Auxiliary Memory

GNC Processors
Main Memory

Biomed Processor
Main Memory

Printers

Data Acquisition
Analog Terminals
TV Control Units
Signal Conditioners
Remote Acquisition Units
Sensors

Data Distribution
Digital Terminals
Decoders
Command Decoder
coax
Twisted Pair

Quantity

2
5
4

2
6
4

2
2

1
1

2

6
10
10
48

2400

15
16
1

1150 f t
1050 ft

Equipment Name

Bulk Data Storage
Buffer and Control
Transport Controllers
Transports
R/W Electronics
Switching Matrices

Image Processing
Film Viewer
Film Reader
Image Processing

Control Station
Adjustable Multichannel

Filter
Working Image Storage
Video Storage
Permanent Storage
Time Reference Unit
Plotter
Microfilm System

Entertainment
TV Monitors
Film Library
Audio/Video Tape

Portable Audio Tape

Video Tape Unit

Portable Microfilm

Storage

unit

w/Vidicon

Viewers

Quantity

1
2
2
1
2

1
1

1

1
1
1
1
1
1
1

14
1

2

2

2

2

8

0 Arithmetic and Logic Unit (ALTJ). The arithmetic function
(fixed and floating point), shifting, logic functions (decisions),
and control functions are performed here. The portion of
the ALU that controls sequencing, contains the decode matrix,
and sends signals to circuits as decoded from the instruction
may be referred to, at times, as the control segment of the
ALU.

0 Microcode. The replacement of the logic gate matrix by formatted
instructions either similar to conventional machine language code
or isomorphic bit to data path control. The outputs of microcoding,
then, become the control signals for the system.

0 Firmware. Software or microcode stored in read-only memory
and thus not subject to dynamic change. There may be associated
Local Store.

0 Multiprogramming. The interleaving of program executions
so as to produce the appearance of simultaneous execution.

0 Multiprocessing. The operation of more than one cooperat-
ing ALU in a single computer (ALUs plus memory and
switching).

2. Computer Characteristics. Each computer is envisioned as being
composed of identical basic' units to enhance the spares, maintenance training,
and cost aspects through broad commonality. A computer is thus composed of
one (simplex) or more (multiprocessor) arithmetic and logic, units (ALU), and
one or more memory module units. Recently specified characteristics of the
ALU include:

0 200-250 KOPS

0 Floating point arithmetic

0 Shared memory bus (in multiprocessor configuration)

0 8-channely high-speed 1/0 interface

0 Microprogrammed LSI control memory

0 32-bit plus check bits word length manipulation.

Similarly, the following characteristics for main memory modules have
been specified:

0 Monolithic

0 16,384 32-bit plus check bit words

9

0 1 microsecond cycle time

0 0 . 5 microsecond access time

0 6-port interface

0 Random addressability.

The characteristics of auxiliary memory a re assumed to be similar to
main memory (possibly identical). The auxiliary memory could be different;
for example, it could exhibit a comparatively slower access time or even a
different organization. Variations in configuration of memories , addressing
schemes, procedures for information coding and manipulation, and effects upon
the overall system constitute a valuable trade analysis area that should be
supported by simulation.

The definitions and characteristics outlined permit a generic description
of the computers aboard the Space Station:

0 A multiprocessor (DMS) for the control of scheduling and
the data bus, and general computing facility use.

0 A multiprocessor for the control of experiments and the
compression/recording of experiment data.

0 A dual redundant (two completely separate and independent
simplex computers) system for Guidance and Navigation (GNC).

0 A simplex computer which is an integral part of the Biomed-
ical subsystem. This computer is envisioned to be dedicated
to the collection and processing of experimental medical
information.

a. DMS Computer. A multiprocessor has been identified as the
focal point for control of the complete Space Station onboard Information Man-
agement System. To the multiprocessor previously described as formed by the
combination of ALU elements and memory modules is added switching inter-
facing mechanisms and the Executive software control capability. This totality
forms the DMS computer. The DMS Multiprocessor is designated as comman-
der of data bus traffic and the center of nonexperiment computing power. (This
prime unit is sometimes referred to interchangeably as the Data Management
System (DMS) computer and the Information Management System (IMS) compu-
ter. In this discussion and the discussions to follow IMS will refer to the total
Information Management System. DMS will refer to the prime computer per-
forming the central data management functions.) One general arrangement of
a DMS Multiprocessor is shown in figure 1. This simplified diagram illustrates
only the most basic building block connections.

10

MICROFILM
STORAGE

AUXILIARY
AND DISPLAY

t t t
I - SWITCHING AND BUS CONTROL

FIGURE 1. MULTIPROCESSOR BLOCK DIAGRAM

I P
I P

I

Each ALU, connected to memory modules, forms a simplex computer.
The simple arrangement shown in the diagram reinforces the indication of
isolation of computing elements. However, more interactive capabilities are
implied and, therefore, considered in the Executive design. Several features
that are commercially available for control of multiprocessor interaction should
receive trade study attention, supported by simulation. The interactive capabil-
ities cannot be exploited safely without extensive simulation to prove that there
are not diminishing returns o r potential degradation in performance and/or
reliability.

b. Experiments Computer. The second multiprocessor is
specified to control experiments from the dynamic schedule initiated by the
DMS computer and to direct the processing, reduction and storage of acquired
experiment data. It is further required to provide backup to the DMS multi-
processor in the event of catastrophic failure of both DMS system ALUs.
Figure 1 also represents the Experiments Multiprocessor since, according to
the assumed baseline, the computer systems (DMS and Experiment) are iden-
tical and thus physically interchangeable. The full extent of the interaction
between the multiprocessors will require additional definition.

c. GNC Computer. A dual redundant computer has been spec-
ified for guidancehavigation aboard the Space Station. The best information
to date indicates that these are two identical but unconnected computers formed
from the same basic modules described earlier. The operational posture of
this equipment has been defined as follows. One simplex computer will be
operating under the simplest Executive form. In the event of failure, a manual
switchover would be made by a monitoring astronaut to the backup computer.
Intuitively, this imples a cold start design of considerable flexibility.

It seems illogical to have a redundant, idle system that must be brought
up and manually started when the number one system fails. The system could
be expanded to include synchronized operation of the dual simplex computer
systems. The outputs of the two systems would then be compared in a voting-
box manner. However, with two votes, the only conclusion that can be drawn
from disagreement is that one (or two) computers have failed or that the voting
mechanism is in error. It wil l not indicate i f , o r which, output is useful; how-
ever, the second system would be up and ready. Further investigation is
indicated in this area.

A solution might be proposed for the present. The Space Station GNC
computer must be reliable and accurate when in use, but it is under-utilized.
Its routine function is to provide position information and control data for the
IMS. These are important functions, but other less frequent tasks (i. e. , dock-
ing maneuvers) are critical. Perhaps the spare ALUs and memory units can
be stowed with switching to the GNC. During the critical periods, at least three
ALUs would operate synchronously and vote to insure correct computations,
identification of failure, and continuity of operation.

12

When the GNC is not in critical-function use, it will provide spares for
the rest of the system. Spares can be maintained in a powered-down condition.
However, the Executive system should have knowledge of every unit, its condi-
tion, and the means (via the data bus) to checkout spare units after power is
applied. The spares stowing procedure could include design features that would
allow the DMS computer to apply power, warm-up, checkout, and switch modules.

It is beyond the scope of this report to establish an operations philosophy
or significant Space Station design alteration requirements. The procedure
described above supports the contention that a viable, dynamic system is pre-
dicted for GNC and that the Executive will support the GNC functions.

d. Biomedical Computer. The data collection and computations
associated with biomedical experiments will be performed on a dedicated sim-
plex computer formed from the previously defined modules (ALU, main memory,
and auxiliary memory). The computer will be interfaced to the Data Bus. Its
computations will not be scheduled nor will it be controlled by the DMS compu-
te r , with the exception of access to the Data Bus.

The biomedical subsystem will be an integratiop of a subject-astronaut,
sensors, data acquisition and signal conditioning, biomedical experiment equip-
ment, computer, and investigator-astronaut. The investigators are normally
specified to be medical doctors. The subjects are scheduled as available (skills
plus free time). The computer programs will provide the flexibility required
for mixing subjects, skills, and experiments. This flexibility requires good
madmachine interaction and well-managed data files.

The madmachine interface will be accomplished by interactive CRTs.
A high-level language wil l permit the investigator to acquire data, perform
prespecified analysis, and direct disposition of results. This ihicates that a
bulk storage is available directly, that analysis hardware may be required
(special function processors), and that the difficulties associated with manip-
ulation of the data be made completely transparent to the user. E the subsystem
includes complex chemical analysis (e.g. , blood-gas analysis, lung volume
and d@fiIsfoh, etc.), some preprocessing hardware will be a system require-
ment. EEG and ECG measurements and analysis will require preconditioning
and filtering arrangements.

The computer will provide a laboratory data management tool. It will
provide standard formats for data presentation, automatic logging, retention of
test results, statistical comparisons, calibration summaries for equipment in
use, and monitor (via the high-level language) methodology to warn of nonuniform
procedures. It would not be unreasonable to expect automatic diagnostic proce-
dures and "learning machine" type interactive computer programs to reduce
training time and to permit operation by various other skill specialists.

13

B. Data Distribution

The Data Bus will form the primary connective route (physical channel)
for transmission of information and control data within the computerxomplex.
The acquisition and display of data is implemented with Digital Terminals,
Command Decoders, Printers, Visual Displays, Lights and Audio Signals.
Some information, such as test and checkout stimuli, responses, control sig-
nals, and other signals defined as internal to various major subsystems will
be routed through separate local data distribution networks. Control of these
data is beyond the scope of this investigation since it does not directly affect
computer loadings. The built-in test and checkout incorporated into major sub-
systems will provide passive backup to the active fault detection and warning
system. Built-in monitoring and testing circuits will be especially important
during periods of inactivity and the subsequent reactivations for system readi-
ness verification.

Data distribution is performed under computer control through the data
bus controller, the 'data bus, digital terminals, and remote data acquisition
units. Several additional assumptions are made regarding the data bus control-
ler in Section N.

1. Data Bus Controller. The DMS computer interfaces to the Digital Data
Bus via the Data Bus Controller. The Controller wil l provide buffer storage -
and decoding capabilities for modem subcarrier selection and bit-rate transi-
tions. It will provide the facility for enabling the transfer of data and furnish
the computer with status information. The computer wil l establish the control
frequency selection and addressing of codes and message priorities. The Data
Bus Controller will provide formatting, message assembly, status analysis,
and external requests/acknowledgements. Data Bus Controller functions are
further discussed in the software design sections.

2. Data Bus. There are both Analog and Digital Data Buses. The
Analog Bus will accept signals from modems that have received their instruc-
tions from the computer via the Data Bus Controller. All frequencies will be
preassigned according to the interfacing modem. Signals captured from the
Analog Bus will be recorded on magnetic tape or displayed on CRTs.

The Digital Data Bus is controlled by the Data Bus Controller. Assump-
tions are made about the Controller when required to simplify the design discus-
sion. The Controller wil l route control signals to peripheral units via a standard
1/0 interface word. The process could be represented by a two-wire serial bit
stream Data Bus System. The single data path could be time-shared by the 1/0
devices. There are assumed to be several carrier frequencies, which is log-
ically equivalent to having several wires. Thus, the Data Bus is a time division/
frequency division multiplexed bus. The computer programs will maintain lists
of 1/0 devices, their carrier frequencies, and the frequencies in use/available.
The bus has not been specified as synchronous or asynchronous with respect to
time.

14

Probably, the Data Bus Controller will format the standard 1/0 inter-
face word and broadcast it to all Data Bus interfaces on that frequency. The
terminal designated at that frequency by that identification code will further
decode the interface word for additional instructions.

3. . Digital Terminals. The -Digital Data Bus, a multi-channel device
for coded digital data transfer, is interfaced to the Remote Data Acquisition
Units (RDAU) and thus to digital input sources via digital terminals. Clock
frequencies (from the time reference) and the terminal addresses (unit designa-
tion) are intercepted by the digital terminals. The terminals decode the address
and thus each responds only to its uniquely designated code. The terminal
activated by the designation code transmits an acknowledge code to the compu-
te r by placing it on the Data Bus at the return carrier frequency. The frequen-
cy, which is comparable to channels on many ground-based computers, utilizes
subcarriers to segregate logically independent digital bit streams. This re-
duces individual bit-rate requirements by providing more logical facilities,
Operational visibility is enhanced by providing separation among data transfers.

Buffer storage is provided in conjunction with the Digital Terminal.
The devices interfaced to the terminal may or may not require separate buffer-
ing. Examples can be postulated such that data must be held by one or more
devices for transfer to the terminal buffer, so that both buffered and unbuffered
devices are expected to be interfaced to Digital Terminals.

4. Analog Terminals. An Analog Terminal intercepts and decodes
the unique device designation code associated with it. Each Terminal can input
eight (8) signals. Any or all of the eight signals may be selected for output
onto the Analog Data Bus. The control of the terminals is the same as for
Digital Terminals.

5. Remote Data Acquisition Units. Remote Data Acquisition Units
(RDAUs) are interfaced to the digital terminals. Each RDAU will accommo-
date up to 64 analog (converted A/D) and/or 8-bit signals. Thus, a Digital
Terminal may ultimately interface up to 512 inputs to the d,ata bus interface.

To reach a particular signal or bit, as discussed earlier, a standard
interface word is broadcast under computer control. The terminal identified
in the standard code word will then further decode the standard interface word
to determine the mode. The transmission will include the address of an RDAU
for digital terminals and instruction codes to reference the RDAU connections
and RDAU procedures. The standard word wil l include the instruction code and
reference frequency for analog terminals.

The RDAU will signal the Bus Controller for the completion of command
transfers. The Controller will then transmit any required signal conditioning

15

commands, amplifier range settings, signal conversions, multiplexing, or
calibration instructions, as provided by the controlling computer.

The RDAU is highly self-contained and process control-oriented. To
relieve the controlling computer of excessive transmissions of commands/
requests, the RDAU has extensive capabilities to continue independent action.
It contains memory, self-test features, and is programmable for three modes
of operation:

0 Compare mode. The RDAU will sequentially scan its inputs
and test each for out-of-limit conditions. The limit thresholds
are set by the control computer via the standard interface word.

0 Sequential output. The RDAU will sequentially scan each of
its inputs and transmit the conditioned and/or digitized data
onto the data bus.

0 Single channel. The standard interface word can cause the
RDAU to sample a single input. It can direct a single sample
or command that the single input be repetitively sampled.

In simplified fashion, the RDAU's path to the computer is illustrated by
figure 2. The Analog Bus, Backup Digital Bus, and Intra-system Buses are
not depicted since they will not clarify the present computer executive study.

C. Configuration Summary

Once the Space Station is operative, it will assume many of the attributes
of a ground-based processing facility. The essential difference is in the special
precautions required where life support and station safety are involved due to
the hostile space environment. The normal working environment, however, is
recognized to be similar to a ground-based laboratory which can be maintained
by more ordinary procedures. Less stringent requirements will permit use of
automatic testing/backup, load sharing and less equipment to provide station
computing continuity and the ability to recover from powered-down periods.

The Space Station apparently wil l not have periods when 100%perform-
ance of all computer systems is required. L€ critical functions a re identified
and planned for by partitioning, a lower level of reliability (with recovery) can
be tolerated in noncritical areas. Recovery procedures can be adjusted to
acceptable levels to minimize experiment data loss or interruption of processing.
However, for the GNC, an increased reliability and a functional use for spares
was proposed.

16

COMPUTER

DATA BUS
ONTROLLE

ANALOGS AND/OR
DIGITAL DISCRETES

1 DATA TERMINAL I

Q MOD EM

DIGITAL DATA BUS

1

MOD EM

m t
TERMINAL

DIGITAL
COMMANDS DISCRETE

COMMANDS

FIGURE 2. DATA DISTRIBUTION SYSTEM

A functional simulation of the Space Station configuration is recommended
to ascertain more detailed requirements and, thus, establish a baseline for
preparation of detailed specifications for the Executive software. The driver
for such a simulation would be the representative job stream. A large part of
job stream definition can be derived from the experiments load (3) and the
expected time-line activities.

3Blue Book Update, Reference Earth Orbital Research and Applications
Investigations, NAS8-25051.

18

SECTION III. PROCESS CONTROL ANI3 SYSTEM PRIMITIVES

The supervisory aspects of controlling pkogram execution within a multi-
purpose digital computer environment have become so complex that not only is
it difficult to implement scheduling procedures that have predictable effects,
but it has also become difficult to establish design requirements and describe
a control method that exhibits primarily desirable features. This complexity
is an inevitable result of demanding more out of computing systems in terms of
the total number of tasks to be completed in a given time interval with highly
automated self-determination. Since faster program development is also desir-
able, systems have been further complicated by the addition of functional
responsibility in the area of development support through program debug, text
edit, language translation, and file maintenance capabilities. Design approaches
can be simplified by recognizing that many functional responsibilities can be
isolated through partitioning o r segmentation into well defined and easily man-
aged subfunctions. The purpose of this section is to define certain basic system
functions that are independent of configuration.

A. Process Control

The following discussion outlines the concept of a Ivprocessfl as it relates
to the computer executive function. Based on this concept, the important fea-
tures of process "construction, t ? "primitives, t ' "control, and "termination"
are discussed. Volume 111 (4) of this report discusses these features and details
of possible implementations.

I

1. Concept of a Process. The usual quantity of work referred to in
discussions regarding computer systems is a "task. If "User tasks" and "system
tasks" have been accepted as terms for describing the entities that an executive
routine deals with in its supervisory capacity. A task will be similarly regarded
in this discussion as a specific quantity of work to be accomplished.

Most of the discussion, however, will be concerned with the sequence of
actions performed in order to complete a task. This sequence is referred to
as a "process. It is important to note that a process may execute code from

4 Kennedy, Sr., J. R. , Spaceborne Computer Executive Routine Functional
Design Specification, Volume 111: Executive Routine Primitives and Process
Control, Computer Sciences Corporation, March 1971.

19

either system or user (application) programs, or both, in a more or less ,

arbitrary order. Since the control devices of process-oriented systems may
include those for stopping process execution, code that is common to several
processes must.be ,reentrant. To. place the concept of a process in perspective,
we define the following heirarchy:

0 . Process,

0 Routine

0 Primitive

The Process is composed of Routines (procedures) and Primitives with
connective coding. Similarly, Routines are made up of Primitives, possibly
other Routines, Coding, and'the associated linkages. Primitives are the basic
cells from which Processes may be constructed, although a Primitive may
consist of a collection of Primitives and linkages. ,Primitives are immediate
candidates for microcode implementation,

2. Construction. In its broadest sense, process construction consists
of program design and coding followed by translation to machine-executable
code, collection into a module that is mapped onto main (instruction) memory,
copying into main memory, and creation and initialization of a block of main
memory that constitutes a set of state variables for control of the process.

For purposes of this discussion,. a simple definition of construction will
be sufficient. It includes:

0 Collection and linking,

e Mapping to main memory, .and

0 Process control block formations.

Collection and linking is the gathering together of the various routines
constituting a set of process code. This may include relocatable object
modules, system routines, library functions, and machine code routines.
After the code is gathered, it i,s. mapped onto a contiguous set of instruc-
tion memory locations plus the prescribed locations for machine code
routines. Once collection and mapping have been accomplished, a Process
Control Block (PCB) can be constructed. Figure 3 shows a possible structure
for a typical PCB and conceptual access mechanism. The contents of this
block are for the;most part self-explanatory; however, table 2 defines the
entries. , . I . : I . . ' . _ . :

. . - . . . : . . -. , I . .

It should be pointed out that no specific memory word size or processor
-:

register set is assumed; the organization of the PCB is therefore subject to

20

i
VIOUSPROCESS I NEXTPROCESS

PCBRING PROCESSNAME
l b l c 1 W CPUNUMBER

. . . - - - - - -

STARTENTRY

--Id CODE

I
RETURNADDRESS

HIGHMEMORY
LOWMEMORY

PRIORITY
BREAKPOINTADDRESS BPATRAPADDRESS
BREAKPOINTOPERAND BPOTRAPADDRESS

,

PRIORITY
MACHINEREGISTERS

FIGURE 3. PROCESS CONTROL BLOCK

TABLE 2. PROCESS CONTROL BLOCK ENTRY DESCRIKTIONS

ENTRY

Previousprucess

Nextprocess

Processname

a b c

W

C Punumber*

Priority

Startentry

Returnaddress

Highmemory

Breakpointaddress

Breakpointoperand

Machineregisters

DE SCRIPTION .~ ~-

Pointer to the predecessor PCB on the ring.

Pointer to the successor PCB on the ring.

Unique name for this process.

Three bit process state indicator.

Counter showing the number of unserviced WAKE prim-
itives invoked for this process.

Hardware address of the processor unit (ALU)
associated, during execution, with this process.

Relative process priority.

Instruction memory address of the first instruction. **
Memory address of the next instruction when process
activity is interrupted; execution will be resumed at
this location.

Largest instruction memory address associated, for
protection and access purposes, with this process.

Instruction memory address which, if it becomes the
argument of an instruction fetch cycle, will cause an
internal processor trap to a predetermined instruction
memory address specified by BPAtrapaddress. ***
Instruction memory address which, if it becomes the
argument of a datum fetch cycle, will cause an internal
processor trap to a predetermined instruction memory
address specified by BPOtrapaddress. ***
A block of words reserved for saving all programmable
processor registers when process activity is stopped.
Must include all registers depicting process state
information.

* Entries a, by c, w, and CPUnumber constitute the Processor Status Word.
** The exact meaning of all main memory addresses is dependent on the

details of hardware addressing. The preliminary organization shown here
is merely representative. For instance, if data and instructions are sep-
arated a high and low data memory address would be required; if a paged
memory is used, the page file map would be saved.

operating in a debug mode.
*** These values would have meaning only when the associated processor is

22

optimization in a specific architectural case. Also, the storage area reserved
for PCBs is assumed to be protected from applications processes through
definition of a set of privileged instructions.

B. System Primitives

A set of basic operators (primitives) is defined in table 3 to permit the
functional discussion of controlled software. A primitive may implement a
simple function o r concatenate a complex relationship of functions, including
the use of other primitives. System primitives will be especially useful in
future specification and detailed executive software design. Their definitions
are specific and unambiguous. Furthermore, the implementation can be per-
formed in software, microcode, o r hardware. Primitives can be analytically
simulated by software implementation with measurements made to determine
the increased effectiveness and efficiency realizeable by converting to micro-
code or hardware.

System supporting procedures, macro calls for supervisor functions,
make use of system primitives. The immediate difference is that supporting
procedures are visible to the application programmer. Supporting procedures
fall into two classes: (1) User, and (2) System-restricted. User permitted
procedures are the supervisor functions made available to the application
programmer via simple mnemonics (e. g. , EXITI) to perform several compli-
cated executive functions. The coding of such procedures will not appear in-
line with the application, but rather be implemented via trap or call execution.
Process parameters required will appear in-line and in the Process Control
Block. System-restricted procedures, of course, are called only within the
executive software and a re not generally available to the application programmer.

A sample support procedure is illustrated in figure 4. An exit or abort
process is initiated by a trapped EXITI or ABORTI mnemonic. These com-
mands request the removal of a specified process from further ALU resource
competition.and the release of associated allocated-resources. The ABORTI,
during debug mode, wil l cause additional processes such as postmortem dumps,
e r ro r testing, and status recording to be made available.

A process has been defined as a sequence of actions performed to com-
plete a task. A task can be either a system or application unit'of work. The
process is constructed by assembling the code, routines and library functions
in addressable storage. System primitives are a basic set of operators through
which the Executive system will control the processes. Process control informa-
tion is contained in a vector of state variables called the Process Control Block.
Primitives are concatenated to form procedures which are "called" by processes.

23

TABLE 3. SYSTEM PRIMITrVES

NAME OPERATIONAL FUNCTION
~~ ~

STOP Stop the executing process until a WAKE occurs (one ex-
ecution of its compute cycle has been completed).

WAKE Prepare the specified process for one (additional) execu-
tion of its compute cycle.

WAIT Discontinue the executing process until some prespecified
event has occurred.

ZONTINUE The prespecified event has occurred; continue execution
of the specified waiting process at the point of discontin-
uanc e.

DISPATCH Start a specified processor in the execution of a specifiec
process (associate a processor and process).

PREEMPT Stop a specified processor in the execution of its assoc-
iated process.

d

SUSPEND Stop the specified processor in the execution of its assoc-
iated process. Stop the specified process if it is executing
prevent execution until a corresponding RELEASE occurs.
Do not disturb any existing processor/process logical
association.

XELEASE Return the specified process to the state it was in at the
time of the most recent corresponding SUSPEND.

3XIT Terminate the executing process.

IBORT A specified process has failed. Terminate the process and
initiate remedial action.

24

EXITI/ABORTI
I

f
PROCESS

TERMINATION
4 ACCOUNTING

WAKE
D

RELEASE WAKE ABORT, ONLY YES f

MEMORY

A

WAKE - - POSTMORTEM

c WAKE - W 1

(-)
1

IN0
CATALOG RELEASE I/O

CLOSURE STATUSING
ENTRY I D DEVICE,

PURGE QUEUES
(REMOVE) 4

v

I No

OPERATIONAL

WAKE
DIAGNOSTICS

J

I ROUTINE

FIGURE 4. EXIT!ABORT PROCEDURES

SECTION IV. SPACE STATION EXECUTIVE

The .Space Station Executive is that collection of algorithms that exer-
cise computer control over computer resources. The "Executive" will be
defined as a generic term referring to the Space Station computer control
regardless of implementation in software , microcode , firmware , or hardware.

Description of the Executive as employing the advantages of a combina-
tion of software, microcode, firmware, and hardware requires a more precise
definition of terms. It is readily apparent that tradeoffs must be conducted, in
some predetailed-design stage, to identify and locate each Executive routine.
The nucleus routines should receive extensive treatment (the nucleus is com-
posed of all Executive routines that a re not removed from main memory and
especially those that provide interfacing, software/hardware or software/
software). The design of the transient area for executing of routines infrequent-
ly executed should be investigated to determine the relative merits of an optimized-
fixed area versus a dynamic area of memory.

There are advantages to implementation in hardware, software or hard-
ware. For example, an algorithm implemented in software would be flexible
(easily altered, visible). The same algorithm implemented through microcode
or firmware would have different attributes. Microcoding operates faster, is
more efficient, and its internal operations are transparent to the application
programmer. However, microcode is less flexible than software since it re-
quires higher skills for preparation, maintenance, and verification. Firmware
is protected from change, but that protection incurs time and considerable
expense when alterations are required. The same algorithm implemented in
hardware could be more reliable and, certainly, invisible to all users. How-
ever, hardware implementations are inflexible and would require even longer
time periods for changes. Hardware changes wil l ripple verification require-
ments through the entire hardware/software system. Microcoded and hard-
ware implementations would produce, to the application programmer , a virtual
"computation machine" with additional attributes above the basic system.

A study should be performed to identify the nucleus components and to
f i x their relative values for implementation in software/microcode/firmware/
hardware. For example, complexity of development, probability of alteration,
and reliability/validation requirements of each module wmld be traded against
the attributes of software, hardware, read only store, and control store imple-
mentation. Frequency of utilization will be a driving determinant, and rep-
resentative models of these demands can be utilized in several areas of
investigation.

27

Within the present constraints of Space Station definition for the Informa-
tion Management System (IMS) and the changes the experiments definition book
is undergoing, the Executive will be approached from the long term view. A
high-level, functional discussion relatively free from computer architecture
specifics will be undertaken.

A high-level functional design wil l be described for Executive control of
the computer complex. A natural focal point of interest is the Multiprocessors
since they form the basis of the computing capacity, control and capabilities of
the system. A thorough consideration must be given to intercomputer commun-
ication and data bus control since intuitively one feels that the additional distance
of transmissions (timing and possibly noise) and complexity (more equipment-
sharing resources) can produce additional problem areas.

A. Intercomputer Communications

Figure 5 illustrates the general flow of information among the primary
computer systems. Each computer will have hardware and software (or micro-
code) to enhance communications among the computers. Modularity within
software entities is an important factor in achieving cooperation and defining
isolation among the separate computer systems conducting specific missions.
The interface between modules can be a verification point prior to each trans-
action.

Several methods of intercomputer communication can be employed.
Some basic methods are:

0 Shared memory

0 Mailbox

0 Semaphore

0 Sense lines and interrupts

0 Timers

0 Data bus messages.

Figure 5 illustrates that there are communication dedicated features
of each computer. The configuration is not sufficiently firm to attempt to
designate procedures between the system computers. Any of the above listed
methods (and others) could be employed. Some of the more viable procedures
wil l be discussed in detail. Executive hardware/software design will enhance
the interactive capability of the system. It will also add to the protection,
from failures or other spurious communications, of the individual computers.

28

DMS EXPERIMENT
MULTIPROCESSOR

I I RECEIVE

17 SCHEDULER

\ MULTIPROCESSOR

SEND 1

TABLE ALLOCATOR
DISPATCHER

rl PROCESS

R E C E l V E '

GNC
DUAL REDUNDANT

SEND I

SCHEDULER
TABLE DISPATCHER I"--)

I
SUPER-
VISOR

I
.

PROCESS

FIGURE 5. INTER- COMPUTER COMMUNICATION

B. Intracomputer Data Control

The data flow within the DMS multiprocessor will be complex. The flow
among the Scheduler, Supervisor, and Data Bus Controller is illustrated in
figure 6. There are major software interfaces at each juncture -of data flow
and each command and control point. These system units will be defined and

indicative of the information management system under control of the Executive.
. discussed in some detail, but the overall relationship, illustrated here, is

The system is interactive. There is feecIforward and feedback analogous
to well understood industrial process control systems. There is sharing of
information through the system data base. The Supervisor controls access to
data and provides routines for manipulation of the data base. Each process
makes use of the Supervisor's capabilities and thus has access to the data base,
and, indirectly, to the Scheduler. The objective is to share the available
resources among active processes, as defined by the Scheduler, and controlled
by the Supervisor.

Can such an interactive system cause objectionable interaction or inter-
ference among processes? Just as in a large process control system, checks
and counterchecks will be established at interfaces to prevent interference.
For example, the Supervisor will maintain knowledge of every process, its
status, requirements, and the resources available to f i l l those requirements.
This is primarily accomplished through the Process Control Block described
earlier and the system data base.

Procedures can be set up between modules tb assure that data trans-
missions are accurate. Hardware trap instructions enable the detailed inspec-
tion of data to determine that the sending module has the proper credentials,
that the data transmitted is complete and reasonable, and that the receiving
module is prepared to accept the data. Additional verification checks can be
made; however, many conventional tests are time-consuming and require
additional resources -- developmental and operational. Procedures of this
type cannot be recommended without an extensive analysis of need versus cost.

Further precautions can be taken through the implementation of require-
ments/utilization prediction and supervisory algorithms. Procedures can be
proved to guarantee that individual problems (e. g. , thrashing and deadlock)
will not arise through scheduling. However, the value of such implementa-
tions must also be traded against their cost in overhead time, space, and side
effects (such as restriction of throughput). It is possible that a thorough study
and functional simulation would produce detailed design procedures for sched-
uling, data management, and resource allocation that will take advantage of the
knowledge gained and eliminate the need for real-time implementation of the
actual algorithms. These algorithms are basic to a detailed system design and
not considered further here.

30

I 1
SUPERVISOR

DATA BUS
CONTROLLER \

L

ATTACHED I/O
MODULES - PROCESS

I

”

FIGURE 6. GENERAL SYSTEM INFORMATION FLOW

C. Scheduler

An algorithm for the scheduling of computer resources (figure 7) is
dependent upon (1) the hardware configuration, (2) attributes of the input
process stream, and (3) the goals to be achieved. We have described a
multiprocessor-multicomputer configuration environment. Detailed assump-
tions such as memory organization, paging drums, and addressing algorithms
have not been made. To make such assumptions would permit a greater level
of design detail, but would negate the long term value of the design. However,
a functional scheduler design can be pursued, bringing out some of the salient
characteristics of schedulers in general, and the Space Station in particular.

The attributes of the process stream is the subject of study not yet
available. Intelligent estimates of the job mix is a driving basic design re-
quirement. Some specific attributes will ,be speculated upon with relative
assurance. For example, certain timeesharing chacaoteristics will be sequired
to service interactive consoles. The time-sharing load should have relatively
minor impact on overall design, compared to the functional requirement for the
time-sharing capability itself. There will be considerable real-time servicing of
experiment equipment. There will be stationkeeping, time corrections, and
other periodic calculations. Large amounts of data ar;! expected to be handled
at random intervals requiring correlation and other large core requirement
application processes. The process stream should be simulated and evaluated
in order to determine an adequate means of scheduling IMS resources. The
validation of the IMS begins here with the proper support of detailed design.

The goals of the system are to service real-time requirements and to
provide an environment in which the application processes, as illustrated in
figure 6, can perform to their specifications as required. It appears that a study
.of the proceBss t rebMll~~bhow. that a large number-of jobs reguiring.-a small to
moderate amount of ALU to actual time ratio wil l be related to several large '

but less frequent jobs requiring large amounts of ALU to actual time ratio.
The assumption of a particular mix of ratios is not necessary at the functional
level, but the extremes are recognized and acknowledged.

Scheduling of processes undertakes the division of available ALU time
and other IMS resources among the tasks that are to be accomplished; To be
considered for ALU time, a process must be "ready" (as defined earlier). The
code has been loaded and the process control block shows all conditions for
"run state'! satisfied. Memory configuration (segmentation, paging, ports,
phasing, addressing algorithms, etc.) plays an important role in determining
how often processes should be loaded which defines swapping constraints. It
also helps to clarify a set of potential problems, including thrashing and dead-
lock, which will be avoided. The protection algorithms mentioned earlier are
examples of methods for addressing these classes of problems.

32

II I I I I I I

READY LIST

2 2

STRATEGIES:
INTERRUPT DRIVEN
ROUND ROBIN
PRIORITY
TIME QUANTUM
RUN TO COMPLETION
ADAPTIVE
MULTIPLE

MAXIMIZE:
RESOURCES UTILIZATION
MULTIPROGRAMMING
THROUGHPUT
RESPONSIVENESS
REAL -TIME

FIGURE 7. PERSPECTIVE OF GENERAL SCHEDULING STRATEGIES

w
w

A scheduling procedure could be followed such that "run state" eligible
programs generate the scheduling algorithm (adaptive scheduling) based on
expected running time, original priority, deadline, waiting time, number of
stacked wakes, memory management, and device utilization. Switching of
ALUs from process to process will require bookkeeping and data-save functions
(much of which is retained in the Process Control Block). This will consume
considerable time if ALUs are switched on every change that produces a higher
priority. Therefore, once a process has begun execution, it should receive a
minimum amount of ALU time. This minimum time may satisfy many require-
ments and thus reduce scheduling overhead. A minimum or optimum time
quantum can be determined through experimentation utilizing simulation.

The ready list contains processes in various states. Those processes
that are eligible for ALU time (competing for the "run state") form a switch
list. That is to say that the available ALU time is divided,, or switched,
among them according to some predefined procedure. An indivisible amount
of ALU time is referred to as a time quantum, and for the DMS is a basic
resource.

The switch list queue control routine will be implemented to serve each
process, according to an algorithm with one or more time quantums. Here
again, simulation can be very valuable following definition of the process data
stream. For example, processes with large 1/0 requirements can be given
larger time slices since they will relinquish the ALU during 1/0 operations.
It would be unfortunate to provide a small time slice to such a process and
have it surrendering the ALU frequently and thus increasing overhead. By the
same token, the amount of list processing time taken referencing procedures
that have to be loaded or that require other time-consuming actiyns could have
a negative effect on the time quantum. Much of this environment can be im-
proved by controlling the production of application software to perform at
maximum interactive efficiency with the derived scheduling procedures.

The scheduling procedure could be adaptive (a single algorithm with many
parameters) or, as illustrated in figure 8 , a specific algorithmic design for
each of the computer subsystems to be scheduled. This is directly applicable
since the scheduling or preparation of ready lists has been specified for the
DMS multiprocessor but will be dispatched and executed on computers that are
unique and separate entities.

A separate scheduling strategy for each computer can be implemented
on either the DMS or from DMS commands to individual computers. Separate
strategies are modular, which enhances flexibility. An individual algorithm
can be changed as required without seriously impacting the rest of the system.
The same holds true for the dispatching functions since they are resident for
each respective computer system. A different dispatching procedure might be

34

EXPERIMENTS
MULTIPROCESSOR

L

EXPERIMENTS
SUPERVISOR

I

EXPERIMENTS
SCHEDULER/
DISPATCHER

1
I

DMS SCHEDULER I
TIME LINE

BATCH
SYSTEM CLOCK

I
t A

DMS
SCHEDULING SCHEDULING
STRATEGY STRATEGY

1

I
I
I
I
I
I
I
I

I

READY
LIST

SCHEDULING
STRATEGY

CNC REDUNDANT
PROCESSORS

I

GNC
SUPERVISOR

GNC
SCHEDULER/
DISPATCHER

I cs
v

FIGURE 8. INDEPENDENT ALGORITHMIC SCHEDULING

suitable for the experiments (large volumes of acquired data, investigator
analysis) and the GNC (extensive calculations, perhaps several control signals) -
at various times.

The scheduling algorithms are the driving force of the Executive sys-
tem. They control the extent of multiprogramming, the time processes start
and complete, and the memory activity. Memory activity greatly affects
throughput. The DMS Scheduler (DMSS) will support multiprogramming and
multiprocessing on the DMS computer and the Experiments computer. There
will be separate algorithms for each of the multiprocessors and for the GNC.
The Biomedical computer is a stand-alone system.

An alternate approach would be one algorithm for the total IMS. Each
processor would then be treated as a multiattribute resource. This paradigm
could be coded to require less main memory. However, it would'require
greater running time and be less flexible than the separate algorithm approach.
The most stringent requirement would be that the DMS computer perform all
allocations and maintain full knowledge of every system's device conditions.
It would also require increased validation time for each change.

The process scheduling algorithm for the DMS will be more powerful
and adaptive than the similar versions for the other computers. The DMS has
a wider range of demands placed upon it and thus requires greater flexibility
(e. g. , timeline , data bus control, program preparation, and astronaut inter-
vention). The Experiments and GNC operations are more stylized and firmer
planning can be implemented.

A s shown in figure 6 , the scheduling algorithms are the decision makers.
The Supervisor is the interface with the processes and all system devices. The
Supervisor maintains the system data bases. The Scheduler, then, must gen-
erate a new schedule based on the requirements at that instant. It is not re-
quired to seek or give any information. It must only update the ready list
which is a part of the system data base.

The ready list is a table that describes each of the processes that have
requested resources. Assuming that the nucleus of the Executive is always
"ready, ' I unless in execution, requires that the ready list contain the status of
code, the processor (ALU) assigned, or the capability for concurrent execution.
Each process will have codes representing the resources required and the
status toward acquiring them. Several algorithms wil l require determination
through further study and simulation. For example, priority and priority
changes, time quantum and its variance, and the allocation/deallocation of
resources should be studied in detail.

36

A ready list need not consist of "ready for run state" processes, but
rather all those processes that make up a manageable segment of the job
stream. The individual process descriptors contain codes indicating that
they are ready for ALU time and their relative priority for that Time. Some-
times referred to as a "switch list, ?' these ready processes acquire an ALU
(run state) via a dispatching algorithm. The switch list processes are main-
tained in a contiguous segment of the ready list so that the dispatcher does not
search processes that are not prepared for the "readyt1 state.

Several studies have been suggested above which will determine pararn-
eters for the algorithms dispatching the scheduled processes. These will differ
for each of the computers due to variations in time-line, demands, and tran-
sients (components off-line for maintenance, failures, etc.).

1. DMS Scheduling Strategy. The scheduling procedure is illustrated
in figure 9 for the DMS multiprocessor. This is also illustrative of the Exper-
iment scheduling since, functionally, the DMS and Experiment computers a re
very similar. The Scheduler is entered when a new process requests ALU
time or when resources are returned to the system. Therefore, if a new
process causes entry, it precludes a queued process that might be satisfied
by the available resources. Requests for resources are matched against the
available resources. Requests are queued for busy resources, and the process
is added to the ready list as "not ready. ' I

Returned resources are another interesting area for study. The algo-
rithm for assigning the resource among several requests of similar priority
can be as simple as first-in first-out, but there are better methods. For
example, the process whose completion will release the most resources (or
utilize the most resources) can be determined, but what would be the result
of implementing such constraints? The returned resource might be assigned
to the process that will complete the fastest and re-release or deallocate the
resource quickly. Is it cost effective to "look ahead" and see what resources
a r e delaying the ready l i s t?

"Current Situation" is an algorithm to continually evaluate the multi-
programming and multiprocessing effectiveness. Samplings from Current
Situation should be regularly, on demand, and at critical points (filling queues,
low multiprogramming, etc.) be sent to the housekeeping routine for future
analysis. A real-time feedback to the scheduling algorithm is a realistic
prospect, also. These are resources or indicators of resource utilization.

If the requests of a process can be satisfied, it joins the ready list to
compete for ALU time. A process control block is constructed and entered
into memory (protected storage is recommended). Its queue representation
is added to the ready or switch list.

37

RESOURCES

Y””t-1 I

/

LIST NOT
SATISFIED

t

ALLOCATION WAIT

A
4

-

BUILD
PROCESS CONTROL

BLOCK-

3 I

O N 0 PROCESS I
IYES

FIGURE 9. DATA MANAGEMENT COMPUTER SCHEDULING

The algorithms described could be primitives at the system design
level. Device Allocation, for example, might be implemented in either read
only storage or microcode and have attributes similar to a macro. The
Scheduler referencing the Allocator would identify, through a parameter list,
the device requested, priority of the requesting process, etc. Reentrant
routines would reduce the coding required for the allocation procedures. How-
ever, it would increase communications requirements.

Modularity should not be less than that indicated in figure 9 for ease of
change and validation. Greater modularity will increase overhead but may be
required at individual device types, access methods, allocation algorithms,
and queue management.

Memory Allocation is illustrated in figure 10. This points out the neces-
sity, not only for modularity, but for flexibility within and among modules. The
allocation of storage is basically the same for any requirement: Is a device
available and a path to that device; is there sufficient storage (logical, physical,
contiguous, etc.); does the requesting process's priority (relative to active
processes) justify more drastic steps ?

If the storage is available, it can be assigned. If not available, it may
be either queued to compete for released storage or other satisfaction may be
sought. For example, a fragmented memory may (possibly) be collapsed to
produce a contiguous, useful area o r a portion of memory may be rolled out
onto mass storage. The tradeoff is twofold: capability vs. the expense of
overhead plus extra developmental expense. These determinations can be
made upon a basis of configuration, job stream, system demand evaluation,
and environmental simulators.

A sample storage map and its implications are illustrated in figure 11.
Various types of protection can be built into such control. For example, a
method of sharing a memory segment among processes (the shaded memory
area) is shown. Protection locks that require specific keys for access are
indicated. Shared memory is basic to reentrant Executive subprograms. De-
pending upon particular design, shared memory can be assigned at load-time
or dynamically.

The user name actually exists only in a reference catalog. The system
will assign a nonconflicting, error resistant process identifier (PROCESSID)
to each name for internal use. This wil l insure against interactive failures
should a dropped bit or other name changing failure occur.

The structure of memory hierarchy and addressing is a driving feature
in the overall system design. There are many designs in use (ground based)
today and more are described as developmental in the computing literature.
These schemes should receive extensive simulation and analysis prior to any
detailed design. Such basic features are resistant to change after baselining. _.

39

DYNAMIC STORAGE
ALLOCATION (DSA)

f

FREE AREA IN
STORAGE MAP RETURN

REQUEST -
t RELATIVE

UNAVAILABLE SEARCH

""_ UNASSINGED AREA
TORAGE MAP FOR COMPACTION

I
AVAILABLE

1

GRANT
REQUEST A

YES PROCESS
ROLLOUT

ALGORITHM

FIGURE 10. DYNAMIC ALLOCATOR

0
OOO

FIGURE 11. SAMPLE STORAGE MAP

A standard interface format is suggested among modules to improve
detailed design, programming, and test. This is illustrated in figure 12. A
standard format has been defined or assumed for the process control block,
the timeline, and other essential and pervasive modules. There will be exten-
sive communication both within and between the computer systems. Therefore,
the development of standards and formats is necessary. Figure 12 is intended
to illustrate one such implementation. All requests and deallocation returns
of memory are made via the Storage Communication Format. The format
contains positions for any information required in a storage transaction and
fully supplies required queuing information.

The Memory Request Queue (described earlier) is depicted as a func-
tional collection of such communications that a re waiting for free memory and
completes the information loop for the format and the request queue. For
example, as shown in figure 10, if USER #1 completes processing, a communi-
cation format is generated and transmitted to return its resources, but the
portion of memory shared with active USER #3 will not be released.

The system level primitives (or macros) will use straightfonvard
communication formats and queueing arrangements to maintain a viable Exec-
utive. The many interfaces, hardware/software and software/software, will
benefit from simplicity of design in this area. The extent to which standardiza-
tion should be carried requires further study.

The difference in DMS and Experiment scheduling is represented by the
"Scheduling Strategy'' and f'Scheduler/Dispatcher" blocks of figure 8. The
differences exist due to the nature of determinability inherent in each system.

The DMS Scheduling Strategy requires flexibility, response to frequent
interruption, and a "flat structure" arrangement. Flat structure refers to the
capability of responding at low levels to changing requirements for all systems
(DMS, Experiment, GNC). The interactive consoles and display devices sug-
gest madmachine interaction, timesharing, program preparation/modification.
The requirements for managing the Data Bus Controller and the interactive
interruption process suggest a flexible system that is relatively free to adjust
to changing time constraints.

2. Experiment Scheduling. The Experiments Scheduling Strategy
suggests a free-standing laboratory environment. The experiments appear
(except for rare exceptions) prescheduled on the timeline. Prescheduled here
refers to the time-skills-performance analysis that application programs wil l
supply. The experiments to be conducted wil l be well defined and must be
scheduled in accordance with the location and attitude of the Space Station, the
availability of equipment and crew skills, and within the capabilities of the
overall system.

42

STORAGE COMMUNICATION

I RETURN/REQUEST l/
MEMORY REQUEST QUEUE

NAME PRIORITY REQUEST AND STATUS
1 A 3 , . . . n

I REQUEST PROCESS 1 I I
I I

I REQUEST PROCESS 2 1 I
REQUEST PROCESS 3

e
e
e

I /

1 REQUEST PROCESS i

FIGURE 12. STANDARD STORAGE INTERFACE

The experiments scheduler is a more highly structured and, compared
to the DMS, less flexible system. The prime scheduling requirements include
data acquisition and analysis procedures (calibration, signal conditioning,
multiplexing, conversion to engineering units , smoothing-filtering , trending,
garbage attrition, compaction, display, storage, and retrieval). The Exper-
iments Multiprocessor receives a message from the DMS that initiates the
scheduling procedure (figure 8). The scheduled experiments then call for the
more detailed functional routines as they are required.

The DMS system creates a scheduling request according to its criteria.
The scheduled experiment then becomes an experiment supervisor which causes
the Experiments Multiprocessor's resident scheduler to complete the schedule
table. The table contains the sequences of states and attributes that the various
.proce'sses,,which support the experiment can assume. This scheduling strategy
should p6ovide the flexibility of servicing data acquisition and real-time controls
with a fninimum of Executive overhead time. The data processing functions
should tend toward a run-to-completion schedule with dispatching that favors
1/0 bound processes. Favoring 1/0 bound processes wil l help to maximize
multiprogramming.

3 . GNC Scheduling Strategy. Processes initiated by the DMS compu-
ter for the GNC Scheduling strategy have three primary types of functions to
perform. These are continuous, pe8riodic and interrupt processes. Continuous
is used in the sense of essentially unconstrained as to completion time. Status
monitoring, testing, and self-test are examples. These programs and lengthy
calculation programflat can be initiated long before results are required can
be run in the bacground of a foreground/background system.

Periodic programs, such as attitude computations, wil l have varying
periods according to the position on the mission timeline. For the Space Station,
some minimum period (perhaps 100 msec) would suffice to provide the reference
base for antenna and telescope pointing and general attitude control. A much
more frequent measurement might be required during docking maneuvers.

The periodic programs require data that must be acquired and may gen-
erate control values that a r e immediate commands and, thus, the requirement
for interrupt processes. Interrupt routines are often a part of the operating
Executive software. In this case, they may be part of the Executive and always
in core or scheduled for loading in anticipation of possible requirement due .to
scheduling of periodic processes. In any event, they are executed as foreground
processes.

The GNC Scheduling Strategy (as implemented on the DMS computer) is
to provide a list of processes to be run, foregroundhackground designator,
and a begin execution time. These items are defined by the maneuver to be
executed as described by the timeline. The GNC Scheduler then conducts
scheduling and resource allocation.

44

I

There is a large body of knowledge to be drawn upon to describe the
GNC scheduling requirements. Though there may have been some less than
optimum designs, there is much to be learned in the sizing, timing, and re-
quirements areas of these efforts. The essential differences are the synchro-
nization of ALUs and the input/output control (external to the DM'S rather than
internal).

D. Dispatching

Scheduling discussions have required frequent reference to, and defini-
tion of, dispatching in the IMS. The dispatcher function is dependent upon a
method of gaining control of an ALU with which to implement an .algorithm that
describes the sharing of ALU resources.

1. DMS Dispatching. The DMS system will operate on a time-switched
basis in order to provide the required timesharing capabilities for computations,
program preparation, and interactive analysis, as illustrated in figure 13. If
an interrupt system is not specified (polling is discussed later), the interval
timer will have to be well within the response required by the system. Buffer-
ing, liberally applied, can ease this constraint.

The dispatching process is quite simple; select, according to some
criteria, the next process to receive ALU time; set the interrupt timer for the
amount of time to be given; initialize the process from the process control
block; set the program address register to the return address saved in the
process control block. The procedure is illustrated in figure 13, and primarily
represents references to the Ready List, Process Control Blocks, and Super-
visor Calls.

2. Experiments Dispatching. The experiments are dispatched either
immediately, by time of day, or by time interval. Since many experiments
are dependent upon time-position, the dispatching would be expected to be on a
time of day basis, which could be represented in some other time frame. The
scheduler will have taken into account the position/attitude reference taken
from the output of the GNC. This dispatching can be similar to the DMS
Dispatcher. However, more of a table-driven dispatching design is recom-
mended. The experiments are greatly dependent upon data acquisition which
prefers a run to completion or interrupt environment. Thus, individual
experiment supervisors wil l time-event conditionally release an ALU. The
scheduling strategy will resolve key differences by assigning the process within
the ALU's Switch List with appropriate priority.

45

. DISPATCHER

4
RETURNED TO
AVAILABLE

NO

SEARCH READY
LIST FOR NEW

ENTRIES
SET PROCESS

AS “NE XT”
BY INCREASING

PRIORITY

YES 0 SWITCH LIST NEW ENTRIES
INDICATOR

“J NO - 1 -
SEARCH SWITCH
LIST QUEUE FOR

NEXT ASSIGNMENT

EMPTYQUEUE

QUANTUM

1 PROCESS

INTERROGATE
FLAGS FOR

UNAVAILABLE

f

L

NO

I +

FIGURE 13. DMS DISPATCHER

Dispatching, then, is primarily the proper initialization of processes
after which they become essentially event driven. An event would be the
acquisition of equipment (telescope), the required function (pointing) and
initiation of data transfer. The terminal condition would be passing out of a
field of view, the initiation of higher priority experiments requesting the same
resources, or the expiration of a predefined time interval. The algorithm will
be one that shares the processing power to maximize multiprogramming but
faces the reality of minimizing overhead and seizure of the ALU during high
computation periods.

L

3. GNC Dispatching. There will not be a complex Dispatcher for
what will operate as a single ALU system. From the previous assumptions
(Section 11. Configuration) and the discussion of scheduling procedures, a
synchronizing function wil l be important. This assumes the requisite hardware
for stopping and starting three ALUs to make their operation essentially identical.

A foreground/background event driven system from the schedule table-
better describes the work in progress function of the GNC Dispatcher. A great
deal of further definition can be accomplished in this area based on firm opera-
tional requirements. The primary function of the Dispatcher is then supportilig
a multiprogramming environment.

E. Supervisor

The basic modules and interfaces that are described or alluded to in
this report are brought together in figure 14. Many of the modules listed are
self-explanatory and may fall into the applications area. For example, "Time
Initialize, WWV Correction" obviously refers to the maintenance of system
time from a transmitted earth time, taking propagation and reception delays
into account. Other modules may be system supported but application imple-
mented.

1. Supervisor Call. Figure 14 indicates that an interrupt type pro-
cedure is used to interface the software processes to the Supervisor Call (SVC)
Interpreter. The Supervisor Call Processor's relationship to the processes
is illustrated in figure 15. There is interaction directly with the process
and directly with the Process Control Block. Even though the process is linked
to the Control Block, the process must go through a SVC to alter the Control
Block. The Interpreter will perform a check of the Process Control Block to
determine the validity of the request. If the request is not valid, the operation
is in error and the ABORT primitive is executed to terminate the process.

A full range of supervisor services (such as utilities, communication,
storage management, and device handlers) is available through SVCs to auth-
orized users. The various tasks and buffers that are attached to a process are

4 7

1

r

INTERRUPT
I/O CONTROL

TIME LINE TIME CONTROL
INTERPRETER (CLOCKS) INTERPRETER DIAGNOSTICS

i

I
9

SUPERVISOR
CALL (SVC)

INTERPRETER

I
.

1 I
ALU/ALU

CONTROL COMMUNICATION
DATA BUS

>
l

DEVICE
HANDLERS

TIME LINE
MANAGER

TIME INITIALIZE \

WWV CORRECTION CHECKPOINT

AUXl LIARY
CONFIGURATION

CONTROL CONTROL

I
HISTORY AND
ACCOUNTING

I

I u UTILITY

I

LOCAL FAILURE
ANALYSIS

POWER FAIL
-SAFE

FIGURE 14. AIRBORNE EXECUTIVE BASIC SUPERVISOR MODULES

RESOURCE
ALLOCATION

SUPERVISOR CALL
PROCESSOR .

I. PROCESS -= t
INITIATOR 4 4

I
J

I I
I I

I L"-------t TERMINATOR

I
1

A

I
PROCESS

I
~

PROCESS - - I""+ PROCESS
CONTROL CONTROL

BLOCK BLOCK

f
PROCESS 1 PROCESS

I
TASK TASK ,

I/O
BUFFER

L

FIGURE 15. SUPERVISOR CALLS

represented in the Process Control Block (PCB). Since the PCB is in protected
storage and is manipulated via privileged instructions, and is not readily sub-
ject to destruction, an interface control mechanism is established. The oppor-
tunity for an accidental supervisor function initiation is remote.

Through SVCs the process can initiate other process executions. These
executions may be sequential or parallel as defined by the type of call. The
process may wait or proceed (to a point) also dependent upon the call. This
flexibility is provided through utilization of the System Primitives.

Resources can be requested (allocation) or released (deallocated) by
SVCs. For example, the 1/0 buffer attached to Processn (see figure 15) can
be returned when it is no longer needed. Main memory or auxiliary device
space wil l be defined by the total mission requirement, configuration design,
and subsystem interfaces. System traps wil l be provided to get memory,
release memory, and perform other user requested functions.

2. Input Job Processor. The timeline (or other entry) will cause the
initiation of a job which requires that a process control block be constructed
and that all of the required factors be available for "ready" condition. A major
function of the input job processing is the interpretation of the job control head-
er. The job control header contains the coded attributes of the environment
within which the job can become a ready process as illustrated in figure 16

When a process is added to the Ready List, it is then available to the
Scheduler which will give it entry to the Switch List. In the Switch List, it
will compete for ALU time with other processes. The Switch List contains
only those processes that are eligible and prepared to use ALU time. E a
process cannot be activated, it goes back to the Ready List until such time as
the preventive indicator is removed.

3. Timeline Control. The timeline will originate from three or more
sources. A predefined timeline will. be prepared prior to orbit, uplink time-
lines wil l be received, and the onboard team will require the ability to alter the
timeline (see figure 17). The assumption made here is that the timeline pre-
pared on the groupd will exist (in orbit) in a useful language that can be trans-
lated into discrete time-ordered events which will be used to WAKE tasks and
to RELEASE suspended processes.

The maintenance of a high-level language timeline wi l l require an encod-
ing process to build the discrete event stream which must be decoded into timer
intervals. However, application programs wil l be required to permit the on-
board team to review the coming shift's (or any interval's) timed procedures.
Further software wil l be provided to permit changes in the timeline by manual

50

INPUT

”

”

”

”

”

svc - -- SCHEDULER

U ALLOCATOR READY
LIST

8l

SWITCH
LIST
TO

ALUS

ALLOCATOR

FIGURE 16. INPUT JOB PROCESSING

- t" UPLINK

FORMAT

INPUT TIME LINE LANGUAGE

J INTERACTION ANALYSIS AND CODE
DECODE AND +" COMPUTER SYNTAX PARSING w

CREW INTERACTION
MANUAL SWITCHES

SYNTAX

SY N KAX
D o

?l WAKE

i ENCOD E R

INVOKER
SEK DELTA TIMER (-> """ I INTERRUPTTO INITIATE

1 I! I I I i I DECODER e
PROPERWAKE FOR e n

EVENT

FIGURE 17. TIME LINE CONTROL

switch for predefined conditions and by input of thd tin~%$ 'ne language through
one of the console input devices. The highest level app 't qcation program would
be of the sort that would accept the station reports (change of personnel, equip-
ment status changes, crew requests) and g e y r a t e a set of nearly optimum
timelines. These would be displayed to the crew commander in various forms
to illustrate the impacts upon crew assignments, utilization of expendables,
and achieving maximum results from the experiments.

/

Modification to the timeline is accomplished in the high-level language.
Each timeline entry is then coded and merged into the discrete time-event
stream as their interval grows small (milliseconds to seconds) dependent upon
type of event and storage requirements.

The delta timer, set by the Decoder, wil l initiate the desired sequence
of events specified by that timed entry. It also causes an entry within the Time-
line Controller to reset the Delta Timer for the next event. Entries, changes,
and execution requests are reported to the system accounting function.

4. Data Bus Control. The Data Bus is under the regulation of the
Data Bus Controller. The descriptions indicate that of several techniques
available, either Polling (discussed later) or Oversample will be employed.
The Oversample technique is implemented by sampling every device attached
to the bus faster than the device could require. In other words, time gran-
ularity specifications would be developed for every device on the Data Bus and
would be tested for ready, waiting-out, waiting-in, and error conditions. These
tests would be made within the time constraints of each device.

Polling (discussed under Input/Output Control) requires periodic samp-
ling of devices. It is similar to the Oversample approach but does not imply
the hectic activity connotated by digital oversample techniques. A Polling signal
is captured by waiting devices to request data bus attention.

The assumption is made, from these and additional considerations,
that the Data Bus Controller is programmable. Device characteristics will
change according to the progression of experiments and the processing of data.
Devices will be connected and/or removed from the bus. Thus, the Bus Control
must be as dynamic and flexible as the system it serves.

The relation between computer (DMS) Executive and the Data Bus Con-
troller is shown in figure 18. A "Data Bus Programmer" routine will maintain
a Data Bus Control sequence basic set of instructions. From the Device In-
ventory List (for oversample) or Active Device List (for polling) a complete
sequence of control instructions is created and mapped into the Data Bus Con-
troller. The Programmer updates control sequences and maintains queues
associated with the Data Bus. It records a change history by waking the account-
ing routine.

53

DMS COMPUTER DATA BUSCONTROLLER

DATABUS PROGRAMMER

I ' I
I

WAIT NO

INVENTORY

BUILD NEW
DATA BUS
CONTROL
SEQUENCE

J ACCOUNTING

I- I -
""-

I
I

4

I

L

WAKE INTERDEVICE

PROCESSID INTERPRETER
I FLAG INTERNAI

PROCESS

DATA BUS
CONTROLLER

HARDWARE

I- I -
DATA BUS

HARDWARE
""- CONTROLLER

I
I

4

I

L

BUILD STANDARD

INTERFACE WORD

\ INTERDEVICE

FIGURE 18. RELATION BETWEEN DMS EXECUTIVE AND THE DATA BUS CONTROLLER

The Data Bus Controller will, theoretically, cycle through the programmed
sequence relieving the computers from considerable repetitive actions. The Pro-
grammable Controller, for example, will build the standard interface word,
broadcast the standard word, and interpret the replies. The DMS computer
has already armed the Controller by specifying the frequencies to”be used and
the sequencing of devices.

If there is device activity that requires computer attention, a flag is
set to indicate the proper internal process. This will be accomplished similar
to the interrupt procedure. In short, a flag bit is sent to all participating ALUs.
Only one ALU will have a corresponding mask bit set and will make the required
response. The mask registers should be alterable by the DMS computer.

A special case occurs when a direct device to device tzansfer is re-
quested (see figure 19). The combination of time division and frequency division
multiplexing will permit design for direct transfer of data between devices ,

(possibly not in a pure digital oversarnple environment). Such capability would
require a flexible relationship between computers, controller, bus and devices.

It is assumed that devices could not initiate an independent action of
this sort. Rather, the Executive will have made the proper resource alloca-
tions and programmed the Data Bus Controller to react with the correct assign-
ment connection control. As illustrated in figure 20 , the requested frequency
or device may be busy and require the same queuing that would be incurred
under any control circumstances. An extensive amount of work is needed to
define the optimum time division multiplexing (TDM) scheme. The Data Bus
Controller will perform the switching, prevent interfering assignments , approve
orders and mix ancillary infomation. These functions are prearranged by the
DMS Computer Executive. A prearrangement could include the assignment of
devices to other Executives for allocation and control. The devices peculiar
to various experiments, fo r example, wil l be allocated by the experiments
multiprocessor Executive. The experiments Executive wil l require interaction
with the Data Bus Controller through commands/requests sent to the DMs
computer Executive.

A particularly interesting involvement here is in the proposed device-
to-device transfers which would include shared .resources (i. e. , bulk storage,
transmitters, etc.). The concept, functionally reasonable, could be complex
to implement whedthe possibilities are carried to their ultimate conclusions.
A functional simulation would enable the description of the bus control in para-
metric terms and permit the necessary variation of design features. A detailed
design could result from this investigation.

55

INTERDEVICE

, J

NO CONTROLLED

I Y E S

(-) (-) CONTROLLER

J 1 I

w

SIGNAL START
TRANSACTION 4

MODEM *
i

(-)

3-1 CLEAR FLAGS Y E S O WITHOUT

ERRORS

ERROR ROUTINES
7 1

CONTROLLER

r

CONSTRUCT
INTERRECORD
MIX OF DATA

FIGURE 19. INTERDEVICE TRANSFER

DATA BUS REQUEST PROGRAM

TERMINATION OF
INPUT DATA

BUFFERED TO
MEMORY

TERM

SELECT HIGHEST
PRIORITY DATA

BUS REQ.
FOR FREE

I

I 1

ROUTINES

ffRETZ7 ~ K ~ ~ ~ ~ ~ D G 7 ,-, SET PRIORITY

OF CURRENT
PROCESS TO

PROCESS'S

RECEIVE OUT 0 OUTPUT ? IN 4-1 DATACOMMAND FORMAT SEND

COMMANDS W/ ROUTE
ADDRESS

DATA BU!

. .

REQUESTS

W

0

-I <

E
3

w m
m w
n w
0 0
*< w

7
0

FIGURE 20. DATA BUS INITIATOR

An interdevice transfer capability should be of significant assistance in
relieving the computers of redundant data handling. However, every innovation
has a price and that price should be determined before detailed design. As a
simple example, it could be necessary to return to the Controller Programmer
for optimization of seek times, assignment of priorities, etc. The implications
for added switching time, intercomputer signalling, Data Bus Controller re-
programming, frequency reassignments, TDM formatting and other interactive
complications would not be simple. A study should be undertaken to define the
data bus activity and thoroughly exercise the total concept in a simulated
environment.

A more detailed description of the Data Bus Control procedure can be
'envisioned by considering requests for bus activity. As illustrated in figure 20,
a two-dimensional queue describing the bus requests is constructed. Since
operations can occur simultaneously,on each frequency division of the data

is made. The arriving requests are ordered (rl, 1-2, . . . , rj) according to an
Executive algorithm.

bus (1, 2, 0 . 0 9 i) , an assignment for input and, if different, output frequency

Requests could be serviced in a simple first-idfirst-out, or last-in/
first-out procedure. However, at least a priority rearrangement is expected.
The algorithm to establish such an order would be based upon original process
priority, time in the queue, the service time required, and the interaction
(such as minimizing arm movements between tracks) with other requests. The
priority rearrangement should not eliminate some processes from gaining a
requested device, but neither should it block very high priority requests.

The Space Station IMS is a major subsystem that will effect the fulfill-
ment of mission objectives. The hardware and software that constitute the
data paths for communication, command, control,' data acquisition and data
dissemination should be extensively investigated before baselinillg. When a
basic system design is selected, the software wil l probably become the critical-
path item. Prior definition of hardware/software interaction in the Executive
communication area will reduce the relative criticality of the overall software
development effort.

5. Input/Output Control. The major function exercised by the 1/0
Control Program is the allocation of access to modem frequencies and unit
controllers. Many paths a re available after the RDAUs which will cause some
complication. Buffering at the terminal, within the RDAUs, and at individual
devices will be individually specified. A fast Data Bus is proposed which could
cause multiple transmissions to the same terminal, for different end devices,
to interfere at intermediate buffering and switching. Thus, 1/0 control may be
several Executive routines to manage and manipulate the 1/0 functional require-
ments. The procedure could be further complicated by the fractionating of
responsibility of device allocation among different computers while attempting
to maintain central control.

58

A secondary control function is to minimize device idle time. This will
be done by maintaining tables of available units, the paths to them, status, and
assignment. Assignments will be made to leave a maximum number of paths
to devices. A queue search, such as illustrated in figure 21, will be used to
match requests with paths to the end items. Status will then be locked to
prevent multiple assignment unless message merging can be established.

There are many ways of providing the 1/0 services required. A mix
of these procedures will be required dependent upon frequency of usage, mem-
ory requirements, designs of peripherals, and overall configuration.

A pool of routines can be maintained which would derive their unique-
ness from the process control block of the user process. Thus, multiple copies
exist, or if reentrant code, only one copy exists for similar devices. The
Process Control Block will maintain the current status of the process's rela-
tionship to the device. For example, a process would not be removed from
main memory while an 1/0 operation w a s in progress, under present thinking.
Thus, a WAKE executed by completion of an 1/0 operation would have a WAITing
process to accept execution.

A Common Pool (COMPOOL) method can be used for the exchange of
messages between ALU and devices or other ALUs. The COMPOOL procedure
provides good isolation since there is no direct contact or signalling between
any divisible units. A shared buffer is filled and a bit set to indicate that
information has been changed. Keys can also be used to control1 access and
destruction of any message in the buffer area. A test and set instruction
should be provided to hold the buffer while information is undergoing change.

The problems associated with the COMPOOL concept include the buffer
area (which might grow quite large) and the necessity for test and set locking
instructions which might not be available. Due to an expected high frequency
of message transmissions, an instruction or microcoded procedure would be
required to prevent the COMPOOL access from absorbing an unjustifiable
amount of time. This would be a good area for investigation by simulating
the variance in buffer requirements, response times, queue lengths, waiting
times, etc. versus various system loadings and configurations.

The major advantage of the COMPOOL concept is that processes could
be removed from the system before their data transfers were theoretically
completed. If a breakdown should prevent the normal data transaction, the
process or an e r ro r routine would be located/loaded in memory and awakened
with a high priority.

Q)
0

' E !

QUEUE SEARCH

7 r
Q INTERLOCK

INTERLOCK
SEARCH

ENTRY LIST

I

CALLING TASK TO
WAIT STATE

WARNING MESSAGE
RELEASE

INTERLOCK

ACCESS '

I

J
END O F
QUEUE

"PIR = PRIORITY INTERRUPT RETURN I YES

. 1

ADDITIONAL

FUNCTIONS

+.

c
BUILD STATUS

INDICATORS

UPDATE
QUEUE

I SET RUN
CONTINUE DATA I

.
L

! .

FIGURE 21. DATA BUS CONTROLLER BUS REQUESTS

A Spooling routine will be utilized to free the multiprocessors from
devices that are slow or absent. Spooling is a specific term for any of several
manufacturers' procedures for transferring information between devices and
auxiliary storage which may be needed in the future or may have been produced
in the past. For example, transmissions to earth will be made on a periodic
basis. Data collected during the 'entire orbit must be output during these '
periods. Data processed by application programs that cannot be printed,
plotted, or transmitted for some reason can be retained on mass storage. An
algorithm must be used to determine the priority of the output as the device
becomes available. Some of the decision parameters are original priority,
comparative length of waiting time, deadline time priorities, length of device
time required, etc.

Various 1/0 control programs will be resident as a part of the Executive
nucleus and some wil l be periodically scheduled. Periodic testing of switch
settings and instrument readings, for example, may perform all necessary
1/0 functions and raise a flag for the awakening of application programs. In
other situations, programs may be called into memory expressly to provide
1/0 services upon interrupt demand.

If extensive time sharing by scientists at terminals is a requirement,
an 1/0 package for the reception of codes and collection/distribution of messages
wil l be a further requirement. The similarities of Space Station Executive soft-
ware and ground-based time sharing facilities will be greatly influenced by the
extent of these requirements. This is further discussed and more evident in
the scheduling and the allocation of ALU time. The astronauts' faster response
time and specialized training could pose an unusual "service satisfaction" prob-
lem for the 1/0 control programs.

Control of the frequencies (channels) on the data bus will be performed,
as illustrated in figures 20 and 22, on the basis of waiting queues and resources.
Sufficient information is not yet available for detailed description of data man-
agement services. However, we can define some requirements and functional
procedures at a high level. The basic assumption is that there are waiting
queues of requests and a limited number of resources to be shared. The
algorithms to actually control the sharing process will be a function identified
by memory requirements, time constraints, device availability, priority,
waiting time, etc.

1/0 control requirements can be carried much further within the Exec-
utive by comparing seek times, rewind times, and optimizing service (by user
or by resource). A relative assignment priority is thus produced to determipe
the allocation of the frequency (channel) to the requesting process. As illus-
trated in the figure, each time the frequency slot becomes available through a
change of state, the waiting queues will be scanned and an optimum assignment
made.

61

FREQUENCYQUEUECONTROL

+-
/ SEARCH \

QUEUE

(, WAITING) FOR NEXT

REQUEST

OPTIMIZE
ASSIGNMENT

AWAKENED BY I/O REQUEST

FLAG FROM DATA BUS CONTROL
i OR

FIGURE 22. FREQUENCY QUEUE CONTROL

The organization of data in files will complement the maximum use of
both data bus and devices. The file organization should be such as to Permit
direct memory access with minimum directory assistance after a transfer has
begun. A table of application files in use will-be maintained in auxiliary mem-
ory to facilitate this function. A hash coded procedure for "spillingff informa-
tion down a memory hierarchy where each succeeding level is slower than the
preceding is a possibility. File organization should be extensively investigated
before any detailed design recommendations are made.

Connection between the 1/0 device (or end equipment) and the data in
storage is dependent upon good configuratlon design tradeoffs. The two most
commonly used procedures for interdevice communication are interrupts and
polling.

a. Interrupts. When a device requires service, it raises a
line to the ALUs. The hierarchical position of the line indicates its relative
priority to all the other possible incoming lines. For flexibility, a study should
be performed to tradeoff the advantages of preprocessing interrupts either in a
special unit (perhaps similar to a Bus Controller type function) or within the
computer under special design considerations. The interrupt, historically,
sets a latch which the software will reset after the service has been performed,
thus permitting the next highest set latch to seize the processor.

Interrupts should probably appear at all ALU interrupt interface points.
However, according to Executive control, only one ALU could be interrupted
by a sufficiently high demand. The Executive could a rm an interrupt mask
register for each ALU corresponding to the possible assigned interrupts that
a r e active. An AND operation would set latches for relative interrupts and
ignore irrelevent ones.

The recommended study should determine the feasibility of changing the
priorities of incoming lines via software, recognizing interrupts and queuing
them in a pop-up hardware stack, arm/disarm/acknowledge, and other facets
of interrupt processing. Considerable complication could possibly result from
an overdependence upon interrupts, especially i f primary circuitry is through
the data bus. An alternative to an extensive interrupt system is polling.

b. Polling. Periodic Polling is illustrated in figure 23. The
illustration primarily is addressed to the RDAUs, but a Polling List and perioA
dicity can be established for each class of equipment. A queue of the devices
to be polled and the required attributes and descriptors of each is maintained
by the Executive (which might suggest a fast auxiliary memory). At the required
polling interval, each device with action status falling within that period is com-
manded to transmit a formatted word. A simpler method is to transmit a

63

PERIODIC POLLING

1 WAKE

RESET POLLING
GROUP TO FIRST

I
NO

I I INCREMENT
TIME COUNTERS

P DIVIDE TIME
INCREMENT

COUNT INTO
POLL ING GROUPS

RDAU POLLING L IST
I I I I

B U I L D D A T A BUS
QUEUE ENTRY

FOR RDAU ENTRY
WHICH EVENLY

DIVIDE THE
COUNT

ACTIVE 11 A 0 A b 1 MSEC

INACTIVE 13 h a A c 2 MSEC

ACTIVE 33 A d A b 1 MSEC

POLL ING RETURNS

""" -
ASSOCIATED
PROCESSID

FIGURE 23. PERIODIC POLLING

polling "signal" whenever the transmission facility is available. The signal
is captured by the first device that is prepared to utilize the facility.

Here we have alternatives to consider. At this level of functional design
consideration, let us assume that there are several possible responses (indicated
either within the format or within the Polling List). The object is to provide
necessary service, best possible service, and flexibility.

For example, the arrangement could be such as to poll all the items on
the Polling List for their descriptive format word. The Polling List can con-
tain the relative priorities of each device demanding access in each frequency
slot, so that priority could be utilized as a factor. Some of the devices respond-
ing as "ready" may require a minor data transmission which is being held by
the Executive (or will be accepted by it; e. g. , status), and should be quickly
serviced to remove them from the holding condition and to release tasks that
may be waiting.

Polling should have a sufficiently high priority to allow it to continue
through a significant amount of work without being preempted. But, this is a
matter to be determined by simulation after hardware design considerations
of Polling versus Interrupts has been better defined.

1/0 Error Recovery. 1/0 error recovery will be planned for
every phase of information exchange. Our present context is illustrated in
figure 24. The type of recovery attempted will depend upon the device in-
volved, the available information describing the failure (channel status bits,
etc.), and the type of data being exchanged.

6. -~

For devices, tape or disc for example, the normal procedure is to
attempt to complete the read or write operation a sufficient number of times
to establish that it is a hard failure. If other paths (e. g. , other controllers,
etc.) are available, a reconfiguration may be attempted.

Output data, generally, can be spooled during reconfiguration or repair.
When the original device is again made available, the data recorded on inter-
mediate storage will be routed to the correct device. The spooling operation
will continue until the device catches up with the saved data.

Data that cannot be input may be disastrous to the subprocess and re-
quire the suspension of the subprocess which would lead to suspension of the
process. If data cannot be obtained, it will be the application program's
decision to perform unaffected processing or to provide warning messages and
request suspension (removal from the system via SUSPEND procedure). An
error exit, EXIT1 procedure, wil l also be provided so that executive system
functions can be utilized to obtain intermediate parameters, dumps, snapshots,
and process-control-block images.

65

I/O ERROR RECOVERY

SIGNAL SPOOLING
TO ORIGINAL
OUTPUT UNIT

INDICATORS

CLEAR SPOOL
REQUIREMENT

RELEASE

WAKE
SYSTEM

ACCOUNTING

SUSPEND
PROCESS

EMERGENCY
REFERENCE

’

FIGURE 24. I/O ERROR RECOVERY

7. Communications. Both uplink and downlink transmission/reception
must be considered by the computer configuration. A t this time, realistic
estimates of the loads that will be imposed upon the individual computers and
the total system cannot be made. However, it appears that a one-hour dump
(downlink) per day wil l be available for collected experiment information. me
to orbit and ground station physical relationships, this hour would probably be
spread across discrete intervals of the 24-hour day. Other communications
would be on a random demand basis from the ground o r by crew-initiated
application programs.

The uplink information may be decoded either by the receiving hardware
or the associated ALU (figure 25). This procedure wil l involve type of format,
timing, addresses, check and test codes, and e r ro r protection. Elaborate
measures may be required (such as redundant transmissions) for operational
commands or software program changes prepared on the ground. General
information or long-range assignments subject to frequent change might require
only normal validity checks.

The downlink is simply the converse of the uplink. Data is buffered
from mass storage to main memory via any required encoding and a direct
memory access function with which to supply the transmitter at its required
rate. Of course, these are all basic notions and subject to the configuration
design. The Data Bus and the Data Bus Controller designs may have significant
impact on the software functions required and the extent to which processing
can continue. For example, a cycle stealing mode versus block transfers to
controller buffers versus dedications of memory units are a few of the possibil-
ities to be considered.

Application programs will precondition and code the data for downlink
transmissions. The supervisory software wi l l be concerned with construction
of an identification block with timing, coding and addressing information. Such
information as data decompression techniques wi l l be agreed upon in advance
or imbedded in the information transmitted. The message will, then, be clocked
to the transmitter buffer under control of the transmitter's encoding-timing
circuits.

Greater complication can be added to both uplink and downlink processing
by requiring that a message be retained until its accuracy is verified and that
unique recoverable points are identified if processing is proceeding parallel
to transmission/reception. It is also possible that all messages wil l be re-
corded in toto both at ground and orbital stations. This would imply application
programs for data recovery/enhancement. The significant Executive impact
wil l be to provide sufficient storage and data management procedures. Both
transmission and reception are time-shared operations since they wil l operate
concurrently but not fully utilize ALUs and auxiliary storage.

6 7

UPLINK

WAIT

SCHEDULING OF
APPROPRIATE COMMAND LANGUAGE

PROCESSING TIMELINE CODE

TELETYPECODE

SECURE CODE

COMPUTER PROGRAM

COMPUTER PROGRAM

SOURCE CODE

EXECUTABLE CODE

FIGURE 25. UPLINK DATA ACQUISITION

8. Fault Tolerance. Modern computer hardware/software technology
produces single components with high resistance to failure. The larger the
number of components, for example at the ALU and memory module level, the
higher the probability for a single failure (intuitively). However, the long
MTBF ratings of the components and normal computer overdesign indicates
a very low probability of multiple failures in separate ALUs. The expected course
of action would be to maintain a configuration map and the capability for switch-
ing the components' interconnections.

Failure analysis and e r ro r handling capabilities will require extensive
planning to make maximum use of currently available and new technology to
Space Station configurations. Specifications developed for error handling and
failure recovery wil l include the specification of procedures such as SUSPEND,
ABORT, and RETRY which, in following discussions, evoke intuitive relation-
ships to memory, hardware, and microcode implementations.

A variety of diagnostic procedures and recovery algorithms will be re-
quired to support the unique Space Station IMS configuration. Some of these
functions are described to illustrate the scope of the problem and some basic
attacks on functional aspects of the problem.

a. Real-time Diagnostics (figure 26). There are several
classes of diagnostics. For example, diagnostic procedures may involve
parallel computation and comparison, or the external use of a standard input
signal, or real-time diagnostics which are run periodically as a process with
low priority. In this case, additional hardware circuits for self-test, parity
comparisons, and error testing are included as real-time failure detections.
This distinction is made to separate executive features from the maintenance
procedures. Maintenance procedures may include extensive use of microcoded
tests and software tests, but are not generally considered part of the real-time
scheme. This restriction may be revised for the Space Station.

A failure detected in real-time is pursued dynamically (figure 26). If
the failure has occurred before and been retried as a possible transient, it is
now assumed to be a reasonably hard failure and an attempt is made to recon-
figure the system to maintain the most viable system with the remaining com-
ponents. The system accounting function may be required to maintain failures
versus time. Algorithms would then determine the rate of failure and measure
it against acceptable thresholds. The type and rate of failure will determine
the procedure to be followed for individual components.

The desired process includes the selection of a specific diagnostic
procedure to isolate the failed component to the lowest possible level (perhaps
to a line replaceable module or a line replaceable card). This is dependent

r - -
I

I
MANUAL I

OVERRIDE

REAL-TIME
DIAGNOSTICS

CANDIDATE
DIAGNOSTIC

VERIFY HARD
CORE ABILITY FOR

DIAGNOSTIC
SUPPORT

>

WAKE
INDICATE

TRANSIENT 4 No YES "-
RESTART-

ERROR STATE

FIGURE 26. REAL-TIME (R/T) DIAGNOSTICS

upon a hard core of memcry and instruction execution capability within which
to start the diagnostic process. Hard core does not refer, here, to a type of
memory but to an unviolated nucleus of hardware and software. Once the in-
dividual diagnostic is WAKED, it will provide additional instructions or CALL
additional procedures or WAKE other diagnostic processes required to diagnose
the failure.

A manual override (a configuration display and control console is
recommended) to provide the astronaut with the capability to manually com-
mand diagnostics and to manually select configurations. The procedure would
be used to remove a module from the system for bench tests or spare replace-
ment.

b. Controlled Retry. The capability to attempt the execution
of an instruction that resulted in failure without committing to the run state
would be useful. This could possibly be executed on a single ALU. However,
it is primarily designed for multiple cooperating ALUs.

The controlling ALU simulates each step of the instruction and com-
mands the execution of that step on the failed ALU. The controlling ALU then
acquires the data from the intermediate registers of the failed unit and com-
pares it with the expected results. Failures are identified to the astronaut if
all steps are not completed. If the execution is correctly performed, the
process may be returned to the ready state, but this is dependent upon several
parameters (i. e. , did the failure destroy memory, has the process been re-
assigned to another ALU, can the particular instruction be reexecuted, etc.).

c. Multiprocessor Failure. The preceding discussions have
applied to failures in general, but what of the concurrent failure of the multi-
processor's two ALUs ?

It is assumed that a failing ALU, as illustrated in figure 27, can test
its previous condition to determine whether it was in the error state and has
experienced an immediate recurrence. If so, this indicates that the ALU was
isolated and any results would not be dependable. Specific failures for a
specific detailed configuration will produce a variety of recovery procedures,
but for this case, a halt of operation is in order. If a cooperating ALU is
operating, a signal would be transmitted to the surviving ALU (figure 28) and
the failed ALU enters an aborted or waiting error-state.

If the ALU was not previously in the error state and has no cooperating
ALU, i t w i l l attempt recovery. This includes the saving of all available inter-
nal registers and inspection of the decoded failure. If data has been destroyed,
the affected processes will be terminated. In any event, an attempt is made
to identify the failure as hard or transient, lo recover processes in execution,

FAILED ALU
RECOVERY ROUTINE

ABORT
WATCHDOG TIMER

WILL NOT BE
RESET

b

" -

NO
PROCEDURE Y I

SAVE A L L

ACCESSIBLE

INFORMATION

DECODE
INSTRUCTION

DIAGNOSTICS

PROCEDURE

Y E S ~

KILL AFFECTED
DESTROYED TASKS

INTERVENTION

FIGURE 27. FAILED ALU RECOVERY ROUTINE

1
SURVIVING ALU

COOPERATIVE RECOVERY

4

v
INITIAL PRELIMINARY

FAILURE
ISOLATION

FUNCTIONS TO
DMS

SCHEDULER LIS

WAKE v """_

(-)

EXPERIMENT

SAVE STATUS,
REGISTERS,

FILES

PRELIMINARY

I-
I

STATE AND STATUS .

MODULE ASSIGNMENTS I IDEN,TITY [- . . I
INTERRUPT MASKS
SPECIAL QUEUE CONTROLS

FIGURE 28. SURVIVING ALU COOPERATIVE RECOVERY

or to attempt restart. If all else fails, diagnostics for isolation of the fault
and manual requirements for repair are in order.

A surviving multiprocessor ALU (recipient of a failure signal) must
first determine whether it is the DMS or Experiments computer. If it is the
Experiments computer, it will save its current state vectors and configure
itself as the DMS. This reconfiguration may be simply the switching to a
separate set of microcode or as extensive as a complete reload and initial-
ization. This is dependent upon the system configuration, the type of failure
sustained and the detail design specifications.

The surviving multiprocessor will execute the DMS functions of com-
manding the Data Bus Controller, scheduling, data management, etc. Certain
experiments, however, could be in the process of controlling equipment that
would be damaged by ignoring them. Several possibilities exist; equipment
design could include automatic safety locks for loss of control signals, limit
switches for antenna and telescopes could be calculated by the DMS from GNC-
provided attitudes, a failure-mode scheduling algorithm could go into effect
with high priorities for essential DMS and Experiment functions, etc.

The surviving multiprocessor, as illustrated in figure 28, must basic-
ally perform two essential functions: assume the DMS command, control and
data management functions, and begin recovery procedures for the failed multi-
processor. The recovery procedure could be a controlled attempt to execute
the failed instruction as shown in figure 29.

The state diagram (figure 30) wil l further clarify the discussion. The
solid line encloses all failure states and the processes that may be taking place.
Outside the solid rectangle is the run condition and the not-failed state. A run
state ALU failing causes it to enter the error state. If it has communication
with a cooperating ALU, the commands and sense transfers are between the
two states. If the e r ro r is proven to be transient, the continued run is prejudiced.
That i s , another failure wil l indicate a hard or frequent failure rate that may
or may not be tolerated. If the problem is removed, perhaps by reconfiguration,
the run continue state can be entered without prejudice.

The recovery procedure is illustrated in more detail in figure 31. This
takes into account the process functioning at time of failure. An executive
failure is potentially more catastrophic, within the present discussion, so the
recovery procedure must include this investigation. Extensive analysis should
be performed to determine nucleus routines and procedures for testing the
hard-core's viability. The figure graphically illustrates a requirenlent for the
capability to extract information from intermediate registers and sense lines.
Sufficient intelligence gained from the failed ALU will permit the decisions,
which have been previously described in some detail, for maintaining a viable IRIS.

74

1
RECOVERY PROCEDURE

.1 , Y E S O F A I L U R E ? -;-?-$-
"-"
CONTROLLEDTRY

4-
RECOVER A L L
A V A I L A B L E

LISTS, QUEUES,
CATALOGS,

MASKS

I I SET EMERGENCY
SCHEDULING
ALGORITHM

a DIAGNOSTICS

(-)

iNO I
COVERED

FROM PREVIOUS
ERROR

SET ERROR
STATE

TEMPORARILY

COLLECT DATA
FROM FAULTY
ALU'S INTER-

MEDIATE
REGISTERS B

SENSORS

POSSIBLY
INTERMITTENT ?

NO

A L U ASSIGNED
TO EXPERIMENTS
HAS FA ILED

RUN CONTINUE
RETRY ?

RESET LISTS TO
ABORT

A F F E C T E D
TASKS

1

RECONFIG-

I INTERVENTION I

(-) RECONFIGURA- ROUTINE

0 RESTART
PROCEDURE

ROUTINE.

FIGURE 31. RECOVERY PROCEDURE

d. Reconfiguration. The reconfiguration of the IMS has been
alluded to several times in the preceding discussions. Procedures for determ-
ining when a failure necessitates alteration of configuration have been considered
with some ideas for preserving the DMS functions. However, the configuration
is not yet specified in sufficient detail to design a procedure for reconfiguration,
even at the functional level.

A flexible capability would include a configuration display and control
console. The crew should have either a continuous or "on-request" display of
the configuration status, component status, and the available spares list. The
display could include a block diagram of the configuration with status, operating-
hours, failure rates, utilization and data unique for each class of equipment.
The computer block, for example, would include the multiprogramming
efficiency, storage utilization, file lengths , allocation conflicts and other
descriptors. Such a display wil l be of significant value during development of
the Executive and integration of application programs. It wil l ease the dif-
ficulty normally experienced in "tuning" the Executive. Tuning refers to the
process of adjusting variables (e. g. , time quantum, file-lengths, etc.) to
optimize processing.

The control capability is dependent upon the switching available and the
routing of data. Switching is specified (figure 1) which indicates that individual
system components can be used through a switching-interfacing component.
This implies that control can be established over the components. The rec-
ommended procedure would be for the DMS Executive io maintain the status
and control information for the overall configuration. In the event of failure
o r upon crew command, the DMS would reconfigure the IMS.

If all data (e. g. , sensor inputs, control outputs, etc.) are on the data
bus, the appropriate modems can be switched for reconfiguration. If these
data signals are on buses internal to specific subsystems, additional config-
uration adaptation wi l l be required to provide flexibility without incurring
penalties in additional switching, signal conditioning and timing.

9. Utilities. Utility programs are basic to development and utiliza-
tion of a computer system. For example, a package of programs is required
to perform the mundane functions of operating a computer facility. This
package will be defined by the types of operations, manual and automatic, that
must be performed. For instance, the maintenance of system history, figure 3 2 ,
is a utility function. The handling of mass storage, editing, debugging packages,
compilers, assemblers, tape to tape copy, etc. , a re other examples.

Mathematical routines required include all the standard packages
to support calculations (e. g. , logarithmic, exponential, trigonometric, etc.).
Additional programs will be required, perhaps specified as application types,
for matrix manipulation, coordinate translation and rotation, display prepnra-
tion and alteration (e. g. , scissoring, y,ooming, perspective, simu1:ltcd perspcc-
t ivc , etc.). 'I'he support of clispl:1>. s~.s tc~ms w i l l hc :I 111ajor supporting ti~nc-tion

78 o f thcl I'scultivc> lor n~~ldic:~tions 11ro~ra111s.

(
DIRECTORIES

)-)a CATALOGS

7 - +

CLOCKED OR
STATISTICAL

SAMPLER

MEMORY

MANAGEMENT

MASS STORAGE
MANAGEMENT

SYSTEM ACCOUNTING FUNCTIONS

.

Q HISTORY

4- -4 -I SCHEDULER

I

TRANSMISSION

UP/DOWN LINK

I

UTILIZATION

PROCEDURES I I WAIT

4- 4 EXIT
WAKE

I ETC,

SUSPEND
RELEASE

FIGURE 32. A UTILITY FEATURE

There are many graphics functions that could be used to considerable
advantage by the astronaut. For example, a simulated perspective application '

program might be used for docking. During the docking procedure, a program '

using the linear radar returns, etc. , could present a display that would appear
to come from a camera perpendicul-ar to the docking procedure. In essence,
the astronauts would be standing outside the spacecraft and observing/controlling
the docking maneuver. These application programs would make extensive use
of the graphics utility package.

80

SECTION V. CONCLUSIONS AND/OR RECOMMENDATIONS

The report has described a computer executive functional design concept
for the Space Station comprising a high-level computer Executive including
control of scheduling, allocation of resources, system interactions, and real-
time supervisory functions.

The approach accommodates most of the currently known system re-
quirements but additional detailed analysis and simulation will , of course, be
required to define and confirm actual design. The following conclusions and/or
recommendations may prove helpful in directing further development:

0 The flight computers should comprise identical basic
components to enhance spares , maintenance , training
and financial aspects through broad commonality.

0 The features of the multiprocessor interaction should
receive trade study attention and interactive capabilities
should be exploited within safe limits.

0 A viable, dynamic GNC computer system utilizing three
ALUs operating synchronously to insure correct compu-
tations, identification of failures, and continuity of
operation with an Executive to support the GNC functions
is recommended.

0 The Biomedical Computer wil l comprise a dedicated
simplex computer interfaced to the data bus for the
integration of sensors, data acquisition and signal
conditioning, biomedical experiment equipment, com-
puter, and investigator-astronaut (medical doctors).
This computer will provide a laboratory data management
tool utilizing standard formats for data presentation,
automatic logging, retention of test results, statistical
comparisons , calibration summaries for equipment in
use, and monitor methodology to warn of nonuniform
procedures.

0 Data distribution will be performed under computer con-
trol through the data bus controller, the data bus, digital
terminals , and remote data acquisition units.

81

0 Remote data acquisition units (RDAU) are interfaced to
the digital terminals. Each unit wil l accommodate up
to 64 analog and/or 8-bit signals; thus, a digital terminal
may ultimately interface up to 512 inputs to the data bus.
The RDAU is highly self-contained, process control
oriented and contains memory as well as self-test
features.

0 The Space Station wil l have no periods when loo’% perform-
ance of all computer systems is required; therefore, if
critical functions are identified and planned for by partition-
ing, a lower level of reliability can be tolerated in non-
critical areas. For the GNC, an increased reliability and
a functional use for spares is recommended.

0 Executive functions will perform operations using the
primitives imbedded in allied coding. System primitives
a re defined wi th emphasis upon the concept of process and
process control. Procedures are also defined, in context,
which yield Executive access to users.

0 The DMS Scheduling Strategy requires flexibility, response
to frequent interruption, and a ”flat structure” arrange-
ment. The interactive consoles and display devices
support man/machine interaction, timesharing, and
program preparation/modification.

0 The Experiments Scheduling Strategy suggests a free-
standing laboratory environment. The experiments are
usually prescheduled from the timeline by the DMS. The
experiments multiprocessor schedules operations from
the DMS list and CALLS from individual experiment
supervisors. Prime scheduled requirements will include
data acquisition, analysis , and reduction procedures.

0 The G N C Scheduling Strategy is to provide a list of pro-
cesses to be run, foreground/background designator, and
a begin execution time. These items are defined by the
maneuver to be executed as described by the timeline.
The G N C computer then schedules from the DMS list and
event driven sequences required in individual maneuvers.

0 The DMS system wi l l operate on a time-switched basis
to provide timesharing capbilitics lor computations,
program preparation, and intcractivc mnl).sis. Dispatching

H‘

algorithms are described to share the processing power
to maximize multiprogramming while minimizing over-
head and seizure of the ALU during high computation
periods.

0 An interrupt type procedure (or trap) is used to interface
the software processes to the SVC Interpreter. There
is interaction directly with the process and directly with
the process control block to monitor the validity of requests.

0 The data bus requirements indicate that a polling, interrupt,
or oversample technique wi l l be employed. The Data
Bus Controller will be programmable and devices wil l be
added to or removed from the bus. Device characteristics
will change according to the progression of experiments
and the processing of data; therefore, the bus control must
be dynamic and flexible.

0 The 1/0 Control primarily governs the allocation of access
to modem frequencies and uliit controllers. A feasibility
study is recommended for priorities of incoming lines via
software, recognizing interrupts, queuing or stacking them,
arm/disarm/acknowledge, and other facets of interrupt
processing. Considerable complication may result from
overdependence either upon interrupts or timed occurrances.

0 A functional simulation of the IMS configuration and
Executives is recommended. Such a simulation wil l
support the detailed design, permit investigation of
work load and emergency load fluctuations and provide
an evaluation and validation benchmark. The results
obtained from a functional simulation should form the
basis for detailed design specifications. Analytic sim-
ulations from the detailed design documents wil l produce
data for validation in the functional simulators.

NASA-Langley, 1971 - 8

